Suppr超能文献

血管内光学相干断层扫描回撤序列中的全自动侧支检测

Fully automated side branch detection in intravascular optical coherence tomography pullback runs.

作者信息

Wang Ancong, Eggermont Jeroen, Reiber Johan H C, Dijkstra Jouke

机构信息

Department of Radiology, Leiden University Medical Center, Mailbox 9600, 2300 RC, Leiden, Netherlands.

出版信息

Biomed Opt Express. 2014 Aug 25;5(9):3160-73. doi: 10.1364/BOE.5.003160. eCollection 2014 Sep 1.

Abstract

Side branches in the atherosclerotic lesion region are important as they highly influence the treatment strategy selection and optimization. Moreover, they are reliable landmarks for image registration. By providing high resolution delineation of coronary morphology, intravascular optical coherence tomography (IVOCT) has been increasingly used for side branch analysis. This paper presents a fully automated method to detect side branches in IVOCT images, which relies on precise segmentation of the imaging catheter, the protective sheath, the guide wire and the lumen. 25 in-vivo data sets were used for validation. The intraclass correlation coefficient between the algorithmic results and manual delineations for the imaging catheter, the protective sheath and the lumen contour positions was 0.997, 0.949 and 0.974, respectively. All the guide wires were detected correctly and the Dice's coefficient of the shadow regions behind the guide wire was 0.97. 94.0% of 82 side branches were detected with 5.0% false positives and the Dice's coefficient of the side branch size was 0.85. In conclusion, the presented method has been demonstrated to be accurate and robust for side branch analysis.

摘要

动脉粥样硬化病变区域的侧支血管很重要,因为它们对治疗策略的选择和优化有很大影响。此外,它们是图像配准的可靠标志物。血管内光学相干断层扫描(IVOCT)通过提供冠状动脉形态的高分辨率描绘,越来越多地用于侧支血管分析。本文提出了一种在IVOCT图像中检测侧支血管的全自动方法,该方法依赖于对成像导管、保护鞘、导丝和管腔的精确分割。使用了25个体内数据集进行验证。成像导管、保护鞘和管腔轮廓位置的算法结果与手动描绘之间的组内相关系数分别为0.997、0.949和0.974。所有导丝均被正确检测到,导丝后方阴影区域的Dice系数为0.97。82个侧支血管中有94.0%被检测到,假阳性率为5.0%,侧支血管大小的Dice系数为0.85。总之,所提出的方法已被证明在侧支血管分析中准确且稳健。

相似文献

1
Fully automated side branch detection in intravascular optical coherence tomography pullback runs.
Biomed Opt Express. 2014 Aug 25;5(9):3160-73. doi: 10.1364/BOE.5.003160. eCollection 2014 Sep 1.
2
Automatic detection of bioresorbable vascular scaffold struts in intravascular optical coherence tomography pullback runs.
Biomed Opt Express. 2014 Sep 12;5(10):3589-602. doi: 10.1364/BOE.5.003589. eCollection 2014 Oct 1.
3
3D assessment of stent cell size and side branch access in intravascular optical coherence tomographic pullback runs.
Comput Med Imaging Graph. 2014 Mar;38(2):113-22. doi: 10.1016/j.compmedimag.2013.08.007. Epub 2013 Sep 7.
4
Automatic Side Branch Ostium Detection and Main Vascular Segmentation in Intravascular Optical Coherence Tomography Images.
IEEE J Biomed Health Inform. 2018 Sep;22(5):1531-1539. doi: 10.1109/JBHI.2017.2771829. Epub 2017 Nov 13.
5
3D registration of intravascular optical coherence tomography and cryo-image volumes for microscopic-resolution validation.
Proc SPIE Int Soc Opt Eng. 2016 Feb 27;9788. doi: 10.1117/12.2217537. Epub 2016 Mar 29.
6
Automatic Lumen Segmentation in Intravascular Optical Coherence Tomography Images Using Level Set.
Comput Math Methods Med. 2017;2017:4710305. doi: 10.1155/2017/4710305. Epub 2017 Feb 7.
7
Three-dimensional registration of intravascular optical coherence tomography and cryo-image volumes for microscopic-resolution validation.
J Med Imaging (Bellingham). 2016 Apr;3(2):026004. doi: 10.1117/1.JMI.3.2.026004. Epub 2016 Jun 28.
8
ARCOCT: Automatic detection of lumen border in intravascular OCT images.
Comput Methods Programs Biomed. 2017 Nov;151:21-32. doi: 10.1016/j.cmpb.2017.08.007. Epub 2017 Aug 16.
9
Bimodal intravascular volumetric imaging combining OCT and MPI.
Med Phys. 2019 Mar;46(3):1371-1383. doi: 10.1002/mp.13388. Epub 2019 Feb 14.

引用本文的文献

1
Harnessing Artificial Intelligence for Innovation in Interventional Cardiovascular Care.
J Soc Cardiovasc Angiogr Interv. 2025 Mar 18;4(3Part B):102562. doi: 10.1016/j.jscai.2025.102562. eCollection 2025 Mar.
2
AI in interventional cardiology: Innovations and challenges.
Heliyon. 2024 Aug 26;10(17):e36691. doi: 10.1016/j.heliyon.2024.e36691. eCollection 2024 Sep 15.

本文引用的文献

4
Calibration of intravascular optical coherence tomography as presented in peer reviewed publications.
Int J Cardiol. 2014 Jan 15;171(1):92-3. doi: 10.1016/j.ijcard.2013.11.071. Epub 2013 Dec 4.
5
QCA, IVUS and OCT in interventional cardiology in 2011.
Cardiovasc Diagn Ther. 2011 Dec;1(1):57-70. doi: 10.3978/j.issn.2223-3652.2011.09.03.
7
OCT versus IVUS: accuracy versus clinical utility.
JACC Cardiovasc Imaging. 2013 Oct;6(10):1105-1107. doi: 10.1016/j.jcmg.2013.05.016.
8
3D assessment of stent cell size and side branch access in intravascular optical coherence tomographic pullback runs.
Comput Med Imaging Graph. 2014 Mar;38(2):113-22. doi: 10.1016/j.compmedimag.2013.08.007. Epub 2013 Sep 7.
9
OCT compared with IVUS in a coronary lesion assessment: the OPUS-CLASS study.
JACC Cardiovasc Imaging. 2013 Oct;6(10):1095-1104. doi: 10.1016/j.jcmg.2013.04.014. Epub 2013 Sep 4.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验