Laboratory of Biological Structure Mechanics (LaBS), Department of Chemistry, Materials and Chemical Engineering "Giulio Natta", Politecnico di Milano, Milan, Italy.
Department of Electronics, Information and Bioengineering, Politecnico di Milano, Milan, Italy.
PLoS One. 2019 Mar 14;14(3):e0213603. doi: 10.1371/journal.pone.0213603. eCollection 2019.
BACKGROUND / OBJECTIVES: Automatic algorithms for stent struts segmentation in optical coherence tomography (OCT) images of coronary arteries have been developed over the years, particularly with application on metallic stents. The aim of this study is three-fold: (1) to develop and to validate a segmentation algorithm for the detection of both lumen contours and polymeric bioresorbable scaffold struts from 8-bit OCT images, (2) to develop a method for automatic OCT pullback quality assessment, and (3) to demonstrate the applicability of the segmentation algorithm for the creation of patient-specific stented coronary artery for local hemodynamics analysis.
The proposed OCT segmentation algorithm comprises four steps: (1) image pre-processing, (2) lumen segmentation, (3) stent struts segmentation, (4) strut-based lumen correction. This segmentation process is then followed by an automatic OCT pullback image quality assessment. This method classifies the OCT pullback image quality as 'good' or 'poor' based on the number of regions detected by the stent segmentation. The segmentation algorithm was validated against manual segmentation of 1150 images obtained from 23 in vivo OCT pullbacks.
When considering the entire set of OCT pullbacks, lumen segmentation showed results comparable with manual segmentation and with previous studies (sensitivity ~97%, specificity ~99%), while stent segmentation showed poorer results compared to manual segmentation (sensitivity ~63%, precision ~83%). The OCT pullback quality assessment algorithm classified 7 pullbacks as 'poor' quality cases. When considering only the 'good' classified cases, the performance indexes of the scaffold segmentation were higher (sensitivity >76%, precision >86%).
This study proposes a segmentation algorithm for the detection of lumen contours and stent struts in low quality OCT images of patients treated with polymeric bioresorbable scaffolds. The segmentation results were successfully used for the reconstruction of one coronary artery model that included a bioresorbable scaffold geometry for computational fluid dynamics analysis.
背景/目的: 多年来,已经开发出用于冠状动脉光学相干断层扫描(OCT)图像中支架支柱分割的自动算法,特别是在金属支架上的应用。本研究的目的有三个:(1)开发并验证一种用于从 8 位 OCT 图像中检测管腔轮廓和聚合物可生物吸收支架支柱的分割算法,(2)开发一种自动 OCT 拉回质量评估方法,以及(3)证明分割算法在创建用于局部血液动力学分析的患者特定支架冠状动脉方面的适用性。
所提出的 OCT 分割算法包括四个步骤:(1)图像预处理,(2)管腔分割,(3)支架支柱分割,(4)基于支柱的管腔校正。然后,此分割过程后接自动 OCT 拉回图像质量评估。该方法基于支架分割检测到的区域数量,将 OCT 拉回图像质量分类为“好”或“差”。该分割算法通过手动分割 23 个体内 OCT 拉回获得的 1150 张图像进行了验证。
当考虑整个 OCT 拉回数据集时,管腔分割的结果与手动分割和先前的研究相当(灵敏度约为 97%,特异性约为 99%),而支架分割的结果与手动分割相比则较差(灵敏度约为 63%,精度约为 83%)。OCT 拉回质量评估算法将 7 个拉回归类为“差”质量病例。当仅考虑分类为“好”的病例时,支架分割的性能指标更高(灵敏度>76%,精度>86%)。
本研究提出了一种用于检测聚合物可生物吸收支架治疗患者低质量 OCT 图像中管腔轮廓和支架支柱的分割算法。分割结果成功用于重建一个包括生物可吸收支架几何形状的冠状动脉模型,用于计算流体动力学分析。