Suppr超能文献

具有序列依赖性纳米结构的两亲性三肽的自组装。

Self-assembly of amphiphilic tripeptides with sequence-dependent nanostructure.

机构信息

Department of Chemical & Biomolecular Engineering, University of Notre Dame, Notre Dame, IN 46556, USA.

Department of Chemical & Biomolecular Engineering, University of Notre Dame, Notre Dame, IN 46556, USA and Department of Chemistry & Biochemistry, University of Notre Dame, Notre Dame, IN 46556, USA and Harper Cancer Research Institute, University of Notre Dame, Notre Dame, IN 46556, USA and Advanced Diagnostics and Therapeutics, University of Notre Dame, Notre Dame, IN 46556, USA.

出版信息

Biomater Sci. 2017 Jul 25;5(8):1526-1530. doi: 10.1039/c7bm00304h.

Abstract

Supramolecular chemistry enables the creation of a diversity of nanostructures and materials. Many of these have been explored for applications as biomaterials and therapeutics. Among them, self-assembling peptides have been broadly applied. The structural diversity afforded from the library of amino acid building blocks has enabled control of emergent properties across length-scales. Here, we report on a family of amphiphilic tripeptides with sequence-controlled nanostructure. By altering one amino acid in these peptides, we can produce a diversity of nanostructures with different aspect-ratio and geometry. Peptides that produce high aspect-ratio structures can physically entangle to form hydrogels, which support cell viability in culture. Importantly, in comparison to many other short self-assembling peptide biomaterials, those reported here form filamentous nanostructures in the absence of typical secondary structures (i.e., β-sheet). Thus, we have illustrated a facile way to obtain versatile biomaterials with different nanostructural morphology from short and defined peptide sequences.

摘要

超分子化学能够创造出多种纳米结构和材料。其中许多已被探索用于生物材料和治疗学的应用。在这些应用中,自组装肽得到了广泛的应用。氨基酸构建块库所提供的结构多样性使得可以控制跨长度尺度的涌现特性。在这里,我们报告了一类具有序列控制的两亲性三肽。通过改变这些肽中的一个氨基酸,我们可以产生具有不同纵横比和几何形状的多种纳米结构。产生高纵横比结构的肽可以通过物理缠结形成水凝胶,从而支持培养中的细胞活力。重要的是,与许多其他短自组装肽生物材料相比,这里报道的那些在没有典型二级结构(即β-折叠)的情况下形成丝状纳米结构。因此,我们已经说明了一种从短而确定的肽序列获得具有不同纳米结构形态的多功能生物材料的简便方法。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验