Mukumoto N, Nakamura M, Sawada A, Suzuki Y, Takahashi K, Miyabe Y, Kaneko S, Mizowaki T, Kokubo M, Hiraoka M
Kyoto University Graduate School of Medicine, Kyoto, Japan.
Kyoto College of Medical Science, Nantan, JAPAN.
Med Phys. 2012 Jun;39(6Part28):3972. doi: 10.1118/1.4736210.
To perform the quality assurance for the dynamic tumor-tracking (DTT) irradiation with Vero4DRT (MHI-Tm 000).
Vero4DRT swings its gimbaled 6-MV C-band x-ray head along the pan and tilt direction to track a moving tumor. Surrogate signal-based DTT system implemented in Vero4DRT was used. Before DTT irradiation, the correlation model (4D-model) between motion of the IR markers on the abdominal wall and the tumor position was created with synchronously monitoring by the IR camera and orthogonal kV x-ray imaging subsystem. During beam delivery, the 4D-model predicted the future tumor position from the displacement of the IR markers in real-time, and then contentiously transferred the corresponding tracking orientation to the gimbaled x-ray head.Water-equivalent phantoms were set on a 1D motor-driven base with IR markers. A film placed at a depth of 10 cm in the phantom was irradiated under the following conditions: stationary state, and tracking and non- tracking state for sinusoidal patterns. In addition, the geometric accuracy was evaluated using a 3D moving phantom and Polaris Spectra for the previously-acquired patient's respiratory pattern.
Compared to the stationary conditions, reductions in lateral distance between 95% doses of the dose profile were 1.2 mm for tracking and 29.6 mm for non-tracking state for (amplitude [A], period [T]) = (20 mm, 2 s); and 0.2 mm and 29.4 mm for (A, T) = (20 mm, 4 s); and 0.0 mm and 11.2 mm for (A, T) = (10 mm, 2 s), respectively. In the geometric accuracy testing, 95th percentile of the tracking error was 0.5 mm in left-right, 1.0 mm in superior-inferior, and 0.5 mm in anterior-posterior direction.
We demonstrated that Vero4DRT substantially reduced the blurring effects on dose distribution with high tracking accuracy, and confirmed the safety of the DTT irradiation for a clinical application. This research was supported by the Japan Society for the Promotion of Science (JSPS) through its Funding Program for World-Leading Innovation R&D on Science and Technology (FIRST Program), and sponsored in part by Mitsubishi Heavy Industries, Ltd.
对Vero4DRT(三菱重工Tm 000)的动态肿瘤追踪(DTT)照射进行质量保证。
Vero4DRT通过其万向节式6兆伏C波段X射线管头在平移和倾斜方向上摆动以追踪移动的肿瘤。使用了Vero4DRT中基于替代信号的DTT系统。在DTT照射前,通过红外摄像机和正交千伏X射线成像子系统同步监测,建立腹壁上红外标记物运动与肿瘤位置之间的相关模型(4D模型)。在束流输送过程中,4D模型根据红外标记物的位移实时预测未来肿瘤位置,然后持续将相应的追踪方向传递给万向节式X射线管头。在带有红外标记物的一维电机驱动基座上设置水等效体模。在体模中10厘米深度处放置一张胶片,在以下条件下进行照射:静止状态,以及正弦模式的追踪和非追踪状态。此外,使用三维移动体模和北极星光谱仪针对先前获取的患者呼吸模式评估几何精度。
与静止条件相比,对于(幅度[A],周期[T])=(20毫米,2秒),剂量分布的95%剂量处的横向距离在追踪状态下减少了1.2毫米,在非追踪状态下减少了29.6毫米;对于(A,T)=(20毫米,4秒),分别为0.2毫米和29.4毫米;对于(A,T)=(10毫米,2秒),分别为0.0毫米和11.2毫米。在几何精度测试中,追踪误差的第95百分位数在左右方向为0.5毫米,在上下方向为1.0毫米,在前后方向为0.5毫米。
我们证明了Vero4DRT在高追踪精度下显著降低了对剂量分布的模糊效应,并证实了DTT照射用于临床应用的安全性。本研究得到了日本学术振兴会(JSPS)通过其科学技术领域世界领先创新研发资助计划(FIRST计划)的支持,并部分由三菱重工有限公司赞助。