Department of Radiation Oncology and Image-applied Therapy, Graduate School of Medicine, Kyoto University, Kyoto 606-8507, Japan.
Med Phys. 2013 Apr;40(4):041706. doi: 10.1118/1.4794506.
To verify the accuracy of an infrared (IR) marker-based dynamic tumor-tracking irradiation system (IR tracking) using the gimbaled x-ray head of the Vero4DRT (MHI-TM2000).
The gimbaled 6-MV C-band x-ray head of the Vero4DRT can swing along the pan-and-tilt direction to track a moving target. During beam delivery, the Vero4DRT predicts the future three-dimensional (3D) target position in real time using a correlation model [four-dimensional (4D) model] between the target and IR marker motion, and then continuously transfers the corresponding tracking orientation to the gimbaled x-ray head. The 4D-modeling error (E4DM) and the positional tracking error (EP) were defined as the difference between the predicted and measured positions of the target in 4D modeling and as the difference between the tracked and measured positions of the target during irradiation, respectively. For the clinical application of IR tracking, we assessed the relationship between E4DM and EP for three 1D sinusoidal (peak-to-peak amplitude [A]: 20-40 mm, breathing period [T]: 2-4 s), five 1D phase-shifted sinusoidal (A: 20 mm, T: 4 s, phase shift [τ]: 0.2-2 s), and six 3D patient respiratory patterns.
The difference between the 95th percentile of the absolute EP (EP (95)) and the mean (μ) + two standard deviations (SD) of absolute E4DM (E4DM (μ+2SD)) was within ± 1 mm for all motion patterns. As the absolute correlation between the target and IR marker motions decreased from 1.0 to 0.1 for the 1D phase-shifted sinusoidal patterns, the E4DM (μ+2SD) and EP (95) increased linearly, from 0.4 to 3.0 mm (R = -0.98) and from 0.5 to 2.2 mm (R = -0.95), respectively. There was a strong positive correlation between E4DM (μ+2SD) and EP (95) in each direction [(lateral, craniocaudal, anteroposterior) = (0.99, 0.98, 1.00)], even for the 3D respiratory patterns; thus, EP (95) was readily estimated from E4DM (μ+2SD).
Positional tracking errors correlated strongly with 4D-modeling errors in IR tracking. Thus, the accuracy of the 4D model must be verified before treatment, and margins are required to compensate for the 4D-modeling error.
利用 Vero4DRT(MHI-TM2000)的万向 x 射线头验证基于红外(IR)标记的动态肿瘤跟踪照射系统(IR 跟踪)的准确性。
Vero4DRT 的万向 6-MV C 波段 x 射线头可以沿俯仰方向摆动,以跟踪移动的目标。在束流输送过程中,Vero4DRT 使用目标和 IR 标记运动之间的相关模型(四维(4D)模型)实时预测目标的未来三维(3D)位置,然后将相应的跟踪方向连续传输到万向 x 射线头。4D 建模误差(E4DM)和位置跟踪误差(EP)分别定义为 4D 建模中目标预测位置与测量位置之间的差异以及照射期间目标跟踪位置与测量位置之间的差异。为了进行 IR 跟踪的临床应用,我们评估了 E4DM 和 EP 之间的关系,针对三种 1D 正弦波(峰峰值幅度[A]:20-40mm,呼吸周期[T]:2-4s)、五种 1D 相移正弦波(A:20mm,T:4s,相移[τ]:0.2-2s)和六种 3D 患者呼吸模式。
对于所有运动模式,绝对 EP(EP(95))的第 95 个百分位与绝对 E4DM(E4DM(μ+2SD))的均值(μ)加两个标准差(SD)之间的差异均在±1mm 以内。对于 1D 相移正弦波模式,目标与 IR 标记运动之间的绝对相关性从 1.0 降低到 0.1,E4DM(μ+2SD)和 EP(95)分别线性增加,从 0.4 增加到 3.0mm(R=-0.98)和从 0.5 增加到 2.2mm(R=-0.95)。在每个方向([横向、头脚、前后])上,E4DM(μ+2SD)和 EP(95)之间均存在很强的正相关,甚至对于 3D 呼吸模式也是如此,因此,EP(95)可以从 E4DM(μ+2SD)中很好地估计。
IR 跟踪中的位置跟踪误差与 4D 建模误差密切相关。因此,在治疗前必须验证 4D 模型的准确性,并且需要留出余量来补偿 4D 建模误差。