Cohen P, Li D, Xie H, Low D, Rimner A, Li G
Memorial Sloan-Kettering Cancer Center, New York, NY.
National Cancer Institute, Bethesda, MD.
Med Phys. 2012 Jun;39(6Part7):3680. doi: 10.1118/1.4734957.
To validate a four-dimensional radiotherapy (4DRT) planning based on a synthesized CT image compensating for tumor motion, accounting for tumor rotation, deformation and distortion due to motion artifacts, and producing realistic normal tissue density in motion-tracking beam eye view.
4D computed tomography (4DCT) images of six patients with peripheral lung lesions in mid or lower lobs (motion range: 0.5-3.5cm and size: 1.5±2.0 cm ) were used. A customized program was used for simulating the patient anatomy with a motion-compensated tumor using 4DCT by aligning the tumor and averaging the 4DCT into a static 3.5DCT image. The gross tumor volume (GTV) was delineated semiautomatically using a threshold algorithm. Variation of GTV in each phase CT was assessed across all phases. 3DRT plans were generated using 3.5DCT and 4DCT and compared for validation. An integrated dose volume histogram (iDVH) from all phase plans and dose warping using deformable image registration (DIR) were used for evaluating 4D plans and comparing with 3.5D plans.
The range of tumor volume variation over the mean within a breathing cycle was 87%±46%. The 3.5DCT produced an 'averaged' GTV, more reliable than that from any phase CT. The results show that the 3.5D plan is equivalent to the 4D plan, except for low dose area, using the iDVH evaluation. On average, the percentage difference for the areas under the DVH and iDVH is 4.3%±2.7%, while 2/3 of the difference results from low dose region blow D20%. Using DIR-based dose warping, PTV coverage varies due to DIR uncertainty for the small lesions.
The 3.5D plan is equivalent to the 4D plan for peripheral lung lesions, yet requires much less clinical workload. The 3.5D plan accounts for tumor motion and tumor variation for a more reliable delineation, and for realistic normal tissue representation for motion tracking.
验证基于合成CT图像的四维放射治疗(4DRT)计划,该计划可补偿肿瘤运动,考虑到由于运动伪影导致的肿瘤旋转、变形和扭曲,并在运动跟踪射野视图中生成逼真的正常组织密度。
使用6例中下叶周围型肺病变患者的4D计算机断层扫描(4DCT)图像(运动范围:0.5 - 3.5cm,大小:1.5±2.0 cm)。使用定制程序通过将肿瘤对齐并将4DCT平均为静态3.5DCT图像,来模拟带有运动补偿肿瘤的患者解剖结构。使用阈值算法半自动勾勒大体肿瘤体积(GTV)。评估所有相位CT中每个相位CT的GTV变化。使用3.5DCT和4DCT生成3DRT计划并进行比较以进行验证。使用来自所有相位计划的综合剂量体积直方图(iDVH)和使用可变形图像配准(DIR)的剂量变形来评估4D计划并与3.5D计划进行比较。
在一个呼吸周期内,肿瘤体积相对于平均值的变化范围为87%±46%。3.5DCT产生了一个“平均”GTV,比任何相位CT产生的GTV更可靠。结果表明,使用iDVH评估时,除低剂量区域外,3.5D计划与4D计划等效。平均而言,DVH和iDVH下面积的百分比差异为4.3%±2.7%,而2/3的差异来自低于D20%的低剂量区域。使用基于DIR的剂量变形时,由于小病变的DIR不确定性,计划靶体积(PTV)覆盖范围会有所不同。
对于周围型肺病变,3.5D计划与4D计划等效,但所需的临床工作量要少得多。3.5D计划考虑了肿瘤运动和肿瘤变化,以便更可靠地勾勒轮廓,并为运动跟踪提供逼真的正常组织表现。