Center for Proton Therapy, Paul Scherrer Institute, Villigen PSI, Switzerland.
Department of Physics, ETH Zurich, Zurich, Switzerland.
Med Phys. 2022 May;49(5):2890-2903. doi: 10.1002/mp.15591. Epub 2022 Mar 17.
Respiratory motion is one of the major challenges in radiotherapy. In this work, a comprehensive and clinically plausible set of 4D numerical phantoms, together with their corresponding "ground truths," have been developed and validated for 4D radiotherapy applications.
The phantoms are based on CTs providing density information and motion from multi-breathing-cycle 4D Magnetic Resonance imagings (MRIs). Deformable image registration (DIR) has been utilized to extract motion fields from 4DMRIs and to establish inter-subject correspondence by registering binary lung masks between Computer Tomography (CT) and MRI. The established correspondence is then used to warp the CT according to the 4DMRI motion. The resulting synthetic 4DCTs are called 4DCT(MRI)s. Validation of the 4DCT(MRI) workflow was conducted by directly comparing conventional 4DCTs to derived synthetic 4D images using the motion of the 4DCTs themselves (referred to as 4DCT(CT)s). Digitally reconstructed radiographs (DRRs) as well as 4D pencil beam scanned (PBS) proton dose calculations were used for validation.
Based on the CT image appearance of 13 lung cancer patients and deformable motion of five volunteer 4DMRIs, synthetic 4DCT(MRI)s with a total of 871 different breathing cycles have been generated. The 4DCT(MRI)s exhibit an average superior-inferior tumor motion amplitude of 7 ± 5 mm (min: 0.5 mm, max: 22.7 mm). The relative change of the DRR image intensities of the conventional 4DCTs and the corresponding synthetic 4DCT(CT)s inside the body is smaller than 5% for at least 81% of the pixels for all studied cases. Comparison of 4D dose distributions calculated on 4DCTs and the synthetic 4DCT(CT)s using the same motion achieved similar dose distributions with an average 2%/2 mm gamma pass rate of 90.8% (min: 77.8%, max: 97.2%).
We developed a series of numerical 4D lung phantoms based on real imaging and motion data, which give realistic representations of both anatomy and motion scenarios and the accessible "ground truth" deformation vector fields of each 4DCT(MRI). The open-source code and motion data allow foreseen users to generate further 4D data by themselves. These numeric 4D phantoms can be used for the development of new 4D treatment strategies, 4D dose calculations, DIR algorithm validations, as well as simulations of motion mitigation and different online image guidance techniques for both proton and photon radiation therapy.
呼吸运动是放射治疗中的主要挑战之一。在这项工作中,我们开发并验证了一套全面且临床合理的 4D 数值体模及其相应的“真实情况”,用于 4D 放射治疗应用。
体模基于提供密度信息和多呼吸周期 4D 磁共振成像(MRI)运动的 CT。利用可变形图像配准(DIR)从 4DMRIs 中提取运动场,并通过在计算机断层扫描(CT)和 MRI 之间注册二进制肺掩模来建立受试者间的对应关系。然后,使用该对应关系根据 4DMRI 运动对 CT 进行变形。由此产生的合成 4DCT 称为 4DCT(MRI)。通过直接比较常规 4DCT 和使用 4DCT 自身运动(称为 4DCT(CT))衍生的合成 4D 图像来验证 4DCT(MRI)工作流程的验证。使用数字重建射线照相(DRR)和 4D 铅笔束扫描(PBS)质子剂量计算进行验证。
基于 13 例肺癌患者的 CT 图像外观和 5 例志愿者 4DMRIs 的可变形运动,生成了总共 871 个不同呼吸周期的合成 4DCT(MRI)。4DCT(MRI)显示出平均上下肿瘤运动幅度为 7 ± 5mm(最小:0.5mm,最大:22.7mm)。对于所有研究病例,常规 4DCT 和相应合成 4DCT(CT)内部的 DRR 图像强度的相对变化小于 5%,至少 81%的像素都如此。使用相同的运动在 4DCT 上计算和在合成 4DCT(CT)上计算的 4D 剂量分布的比较,以 90.8%(最小:77.8%,最大:97.2%)的平均 2%/2mm 伽马通过率实现了相似的剂量分布。
我们基于真实的成像和运动数据开发了一系列数值 4D 肺部体模,这些体模能够真实地表示解剖结构和运动场景,并且具有每个 4DCT(MRI)的可访问“真实情况”变形矢量场。开源代码和运动数据允许预期的用户自行生成更多的 4D 数据。这些数值 4D 体模可用于开发新的 4D 治疗策略、4D 剂量计算、DIR 算法验证,以及质子和光子放射治疗的运动缓解和不同在线图像引导技术的模拟。