Suppr超能文献

SU-E-J-109:使用混合可变形图像配准和模糊连接图像分割方法在不同图像模态之间进行精确轮廓转移。

SU-E-J-109: Accurate Contour Transfer Between Different Image Modalities Using a Hybrid Deformable Image Registration and Fuzzy Connected Image Segmentation Method.

作者信息

Yang C, Paulson E, Li X

机构信息

Medical College of Wisconsin, Milwaukee, WI.

出版信息

Med Phys. 2012 Jun;39(6Part7):3677. doi: 10.1118/1.4734945.

Abstract

PURPOSE

To develop and evaluate a tool that can improve the accuracy of contour transfer between different image modalities under challenging conditions of low image contrast and large image deformation, comparing to a few commonly used methods, for radiation treatment planning.

METHODS

The software tool includes the following steps and functionalities: (1) accepting input of images of different modalities, (2) converting existing contours on reference images (e.g., MRI) into delineated volumes and adjusting the intensity within the volumes to match target images (e.g., CT) intensity distribution for enhanced similarity metric, (3) registering reference and target images using appropriate deformable registration algorithms (e.g., B-spline, demons) and generate deformed contours, (4) mapping the deformed volumes on target images, calculating mean, variance, and center of mass as the initialization parameters for consecutive fuzzy connectedness (FC) image segmentation on target images, (5) generate affinity map from FC segmentation, (6) achieving final contours by modifying the deformed contours using the affinity map with a gradient distance weighting algorithm. The tool was tested with the CT and MR images of four pancreatic cancer patients acquired at the same respiration phase to minimize motion distortion. Dice's Coefficient was calculated against direct delineation on target image. Contours generated by various methods, including rigid transfer, auto-segmentation, deformable only transfer and proposed method, were compared.

RESULTS

Fuzzy connected image segmentation needs careful parameter initialization and user involvement. Automatic contour transfer by multi-modality deformable registration leads up to 10% of accuracy improvement over the rigid transfer. Two extra proposed steps of adjusting intensity distribution and modifying the deformed contour with affinity map improve the transfer accuracy further to 14% averagely.

CONCLUSIONS

Deformable image registration aided by contrast adjustment and fuzzy connectedness segmentation improves the contour transfer accuracy between multi-modality images, particularly with large deformation and low image contrast.

摘要

目的

开发并评估一种工具,该工具在低图像对比度和大图像变形的挑战性条件下,相较于一些常用方法,能够提高不同图像模态之间轮廓转移的准确性,用于放射治疗计划。

方法

该软件工具包括以下步骤和功能:(1) 接受不同模态图像的输入;(2) 将参考图像(如MRI)上现有的轮廓转换为勾勒出的体积,并调整体积内的强度以匹配目标图像(如CT)的强度分布,以增强相似性度量;(3) 使用适当的可变形配准算法(如B样条、 demons算法)对参考图像和目标图像进行配准,并生成变形后的轮廓;(4) 将变形后的体积映射到目标图像上,计算均值、方差和质心,作为在目标图像上进行连续模糊连接(FC)图像分割的初始化参数;(5) 从FC分割生成亲和力映射;(6) 使用具有梯度距离加权算法的亲和力映射修改变形后的轮廓,从而获得最终轮廓。该工具使用四名胰腺癌患者在相同呼吸阶段采集的CT和MR图像进行测试,以尽量减少运动失真。计算与目标图像上直接勾勒相比的Dice系数。比较了包括刚性转移、自动分割、仅可变形转移和所提出方法在内的各种方法生成的轮廓。

结果

模糊连接图像分割需要仔细的参数初始化和用户参与。通过多模态可变形配准进行自动轮廓转移比刚性转移的精度提高了10%。另外提出的调整强度分布和用亲和力映射修改变形轮廓的两个步骤,进一步将转移精度平均提高到14%。

结论

由对比度调整和模糊连接分割辅助的可变形图像配准提高了多模态图像之间的轮廓转移精度,特别是在大变形和低图像对比度的情况下。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验