Suppr超能文献

WE-E-213CD-06:一种用于多图谱自动分割的基于强度的局部自适应标签融合方法。

WE-E-213CD-06: A Locally Adaptive, Intensity-Based Label Fusion Method for Multi- Atlas Auto-Segmentation.

作者信息

Han X

机构信息

Elekta Inc., Maryland Heights, MO.

出版信息

Med Phys. 2012 Jun;39(6Part27):3960. doi: 10.1118/1.4736162.

Abstract

PURPOSE

Atlas-based auto-segmentation (ABAS) has emerged as a very useful contouring tool for radiotherapy planning. Higher accuracy of ABAS typically requires the use of multiple atlases, for which the final label fusion step is a key design component. This work presents a novel locally adaptive, intensity-based label fusion approach for multi-atlas ABAS, and compares its performance against the commonly used STAPLE method.

METHODS

The label fusion method derives the final structure label for a novel patient image as a weighted average of several warped atlas label maps, where the atlas warping is achieved through deformable atlas registration. Instead of assigning a constant global weighting factor for each atlas and for each structure, adaptive weights are computed at each image location based on the local correlation coefficients (LCC) computed between the patient image and each warped atlas image. To compensate for registration errors, neighboring atlas labels within a small distance from the center point are also considered in the fusion computation, but only the first k (typically 25) neighbors with the largest LCC are included to get better accuracy. The method was evaluated using ten manually contoured H&N patient images with a leave-one-out validation strategy. Performances of the newly proposed method and the classical STAPLE method are compared for 7 structures including the mandible, the parotids (left and right), the sub- mandibular glands (left and right), the brainstem, and the spinal cord.

RESULTS

The proposed intensity-based label fusion method significantly outperforms the STAPLE method for all structures considered. The improvement of the mean Dice value ranges from 1.5%for the right parotid to 9% for the right sub-mandibular gland.

CONCLUSIONS

The locally adaptive, intensity-based label fusion provides a superior accuracy compared to the STAPLE method, which helps boost the performance of ABAS methods and make them more usefulness in practice. The author is a current employee of Elekta Inc.

摘要

目的

基于图谱的自动分割(ABAS)已成为放射治疗计划中一种非常有用的轮廓勾画工具。ABAS的更高准确性通常需要使用多个图谱,其中最终的标签融合步骤是关键设计组件。本文提出了一种用于多图谱ABAS的新颖的局部自适应、基于强度的标签融合方法,并将其性能与常用的STAPLE方法进行比较。

方法

标签融合方法通过对几个变形图谱标签图进行加权平均,得出新患者图像的最终结构标签,其中图谱变形通过可变形图谱配准实现。不是为每个图谱和每个结构分配恒定的全局加权因子,而是基于患者图像与每个变形图谱图像之间计算的局部相关系数(LCC)在每个图像位置计算自适应权重。为了补偿配准误差,在融合计算中还考虑了距中心点较小距离内的相邻图谱标签,但仅包括具有最大LCC的前k个(通常为25个)邻居以获得更高的准确性。使用十张手动勾画的头颈部患者图像,采用留一法验证策略对该方法进行评估。比较了新提出的方法和经典STAPLE方法在包括下颌骨、腮腺(左右)、下颌下腺(左右)、脑干和脊髓在内的7个结构上的性能。

结果

对于所有考虑的结构,所提出的基于强度的标签融合方法明显优于STAPLE方法。平均Dice值的提高范围从右侧腮腺的1.5%到右侧下颌下腺的9%。

结论

与STAPLE方法相比,局部自适应、基于强度的标签融合提供了更高的准确性,这有助于提高ABAS方法的性能并使其在实践中更有用。作者目前是医科达公司的员工。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验