Chemistry & Biochemistry Department, Center for Biomolecular Structure and Organization, Maryland NanoCenter, University of Maryland, College Park, MD, 20742, USA.
Adv Mater. 2017 Jul;29(28). doi: 10.1002/adma.201701019. Epub 2017 May 18.
A long-standing goal of DNA nanotechnology has been to assemble 3D crystals to be used as molecular scaffolds. The DNA 13-mer, BET66, self-assembles via Crick-Watson and noncanonical base pairs to form crystals. The crystals contain solvent channels that run through them in multiple directions, allowing them to accommodate tethered guest molecules. Here, the first example of biomacromolecular core-shell crystal growth is described, by showing that these crystals can be assembled with two or more discrete layers. This approach leads to structurally identical layers on the DNA level, but with each layer differentiated based on the presence or absence of conjugated guest molecules. The crystal solvent channels also allow layer-specific postcrystallization covalent attachment of guest molecules. Through controlling the guest-molecule identity, concentration, and layer thickness, this study opens up a new method for using DNA to create multifunctional periodic biomaterials with tunable optical, chemical, and physical properties.
DNA 纳米技术的一个长期目标是组装 3D 晶体,用作分子支架。DNA 13 -mer BET66 通过克里克-沃森碱基对和非经典碱基对自组装形成晶体。这些晶体包含溶剂通道,它们在多个方向上贯穿晶体,允许它们容纳连接的客体分子。在这里,通过展示这些晶体可以用两个或更多离散层组装,描述了第一个生物大分子核壳晶体生长的例子。这种方法导致 DNA 水平上结构相同的层,但根据共轭客体分子的存在与否对每个层进行区分。晶体溶剂通道还允许层特异性的结晶后客分子共价附着。通过控制客体分子的身份、浓度和层厚度,这项研究为使用 DNA 创造具有可调光学、化学和物理性质的多功能周期性生物材料开辟了一种新方法。