Suppr超能文献

基于大规模数据驱动的综合框架,从疾病相关基因数据集提取关键靶标和过程。

Large-scale data-driven integrative framework for extracting essential targets and processes from disease-associated gene data sets.

机构信息

Institute of Infectious Disease and Molecular Medicine at UCT and a Researcher at AIMS.

Division of Human Genetics, Department of Pathology, UCT.

出版信息

Brief Bioinform. 2018 Nov 27;19(6):1141-1152. doi: 10.1093/bib/bbx052.

Abstract

Populations worldwide currently face several public health challenges, including growing prevalence of infections and the emergence of new pathogenic organisms. The cost and risk associated with drug development make the development of new drugs for several diseases, especially orphan or rare diseases, unappealing to the pharmaceutical industry. Proof of drug safety and efficacy is required before market approval, and rigorous testing makes the drug development process slow, expensive and frequently result in failure. This failure is often because of the use of irrelevant targets identified in the early steps of the drug discovery process, suggesting that target identification and validation are cornerstones for the success of drug discovery and development. Here, we present a large-scale data-driven integrative computational framework to extract essential targets and processes from an existing disease-associated data set and enhance target selection by leveraging drug-target-disease association at the systems level. We applied this framework to tuberculosis and Ebola virus diseases combining heterogeneous data from multiple sources, including protein-protein functional interaction, functional annotation and pharmaceutical data sets. Results obtained demonstrate the effectiveness of the pipeline, leading to the extraction of essential drug targets and to the rational use of existing approved drugs. This provides an opportunity to move toward optimal target-based strategies for screening available drugs and for drug discovery. There is potential for this model to bridge the gap in the production of orphan disease therapies, offering a systematic approach to predict new uses for existing drugs, thereby harnessing their full therapeutic potential.

摘要

目前,全球人口面临着一些公共卫生挑战,包括感染的发病率不断上升和新病原体的出现。药物开发的成本和风险使得开发几种疾病的新药,特别是孤儿病或罕见病的药物,对制药行业没有吸引力。在市场批准之前需要证明药物的安全性和疗效,并且严格的测试使药物开发过程缓慢、昂贵且经常导致失败。这种失败往往是由于在药物发现过程的早期步骤中使用了不相关的靶点,这表明靶点的识别和验证是药物发现和开发成功的基石。在这里,我们提出了一个大规模的数据驱动的综合计算框架,从现有的疾病相关数据集提取基本靶点和过程,并通过在系统水平上利用药物-靶点-疾病的关联来增强靶点选择。我们将这个框架应用于结核病和埃博拉病毒病,结合了来自多个来源的异质数据,包括蛋白质-蛋白质功能相互作用、功能注释和药物数据集。得到的结果证明了该方法的有效性,导致提取了基本的药物靶点,并合理利用了现有的批准药物。这为筛选现有药物和药物发现提供了一个基于最佳靶点的策略的机会。该模型有可能弥补孤儿病治疗方法生产方面的差距,为预测现有药物的新用途提供了一种系统的方法,从而充分发挥其治疗潜力。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验