Suppr超能文献

用于发现结核病药物靶点的计算机模拟分析。

In silico analyses for the discovery of tuberculosis drug targets.

作者信息

Chung Bevan Kai-Sheng, Dick Thomas, Lee Dong-Yup

机构信息

Bioprocessing Technology Institute, A*STAR (Agency for Science, Technology and Research), 20 Biopolis Way, #06-01 Centros, Singapore 138668.

出版信息

J Antimicrob Chemother. 2013 Dec;68(12):2701-9. doi: 10.1093/jac/dkt273. Epub 2013 Jul 9.

Abstract

Antibacterial drug discovery is moving from largely unproductive high-throughput screening of isolated targets in the past decade to revisiting old, clinically validated targets and drugs, and to classical black-box whole-cell screens. At the same time, due to the application of existing methods and the emergence of new high-throughput biology methods, we observe the generation of unprecedented qualities and quantities of genomic and other omics data on bacteria and their physiology. Tuberculosis (TB) drug discovery and biology follow the same pattern. There is a clear need to reconnect antibacterial drug discovery with modern, genome-based biology to enable the identification of new targets with high confidence for the rational discovery of new drugs. To exploit the increasing amount of bacterial biology information, a variety of in silico methods have been developed and applied to large-scale biological models to identify candidate antibacterial targets. Here, we review key concepts in network analysis for target discovery in tuberculosis and provide a summary of potential TB drug targets identified by the individual methods. We also discuss current developments and future prospects for the application of systems biology in the field of TB target discovery.

摘要

抗菌药物研发正从过去十年中对孤立靶点进行的成效甚微的高通量筛选,转向重新审视旧的、经临床验证的靶点和药物,以及采用经典的黑箱全细胞筛选。与此同时,由于现有方法的应用以及新的高通量生物学方法的出现,我们看到了关于细菌及其生理学的基因组和其他组学数据在质量和数量上都达到了前所未有的水平。结核病(TB)药物研发和生物学研究也遵循同样的模式。显然有必要将抗菌药物研发与基于基因组的现代生物学重新联系起来,以便能够高置信度地识别新靶点,从而合理地发现新药。为了利用日益增长的细菌生物学信息,已开发出多种计算机方法并应用于大规模生物学模型,以识别候选抗菌靶点。在此,我们综述了用于结核病靶点发现的网络分析中的关键概念,并总结了通过各种方法鉴定出的潜在结核病药物靶点。我们还讨论了系统生物学在结核病靶点发现领域应用的当前进展和未来前景。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验