Suppr超能文献

肌肉减少症的生物标志物:还原论与复杂性

Biomarkers for Sarcopenia: Reductionism vs. Complexity.

作者信息

Calvani Riccardo, Picca Anna, Cesari Matteo, Tosato Matteo, Marini Federico, Manes-Gravina Ester, Bernabei Roberto, Landi Francesco, Marzetti Emanuele

机构信息

Department of Geriatrics, Neurosciences and Orthopedics, Catholic University of the Sacred Heart, Rome, Italy.

Gerontopôle, Centre Hospitalier Universitaire de Toulouse, Toulouse, France.

出版信息

Curr Protein Pept Sci. 2018;19(7):639-642. doi: 10.2174/1389203718666170516115422.

Abstract

Sarcopenia, the progressive and generalized loss of muscle mass and strength/function, is a major health issue in older adults, given its high prevalence and burdensome clinical ramifications. The absence of a unified operational definition for sarcopenia has hampered its full appreciation by healthcare providers, researchers and policy-makers. At the same time, this unresolved debate and the complexity of musculoskeletal aging pose major challenges to the identification of clinically meaningful biomarkers. This review summarizes the current knowledge on biological markers for sarcopenia, including a critical appraisal of traditional procedures for biomarker development in the field of muscle aging. As an alternative approach, we illustrate the potential advantages of biomarker discovery procedures based on multivariate methodologies. Relevant examples of multidimensional biomarker modeling are provided with an emphasis on its clinical and research application.

摘要

肌肉减少症是指肌肉质量、力量和功能进行性、全身性丧失,鉴于其高患病率和繁重的临床后果,它是老年人的一个主要健康问题。缺乏肌肉减少症的统一操作定义妨碍了医疗服务提供者、研究人员和政策制定者对其全面认识。与此同时,这场尚未解决的争论以及肌肉骨骼衰老的复杂性给识别具有临床意义的生物标志物带来了重大挑战。本综述总结了目前关于肌肉减少症生物标志物的知识,包括对肌肉衰老领域生物标志物开发传统程序的批判性评估。作为一种替代方法,我们阐述了基于多变量方法的生物标志物发现程序的潜在优势。提供了多维生物标志物建模的相关示例,并强调其临床和研究应用。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验