文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

OrthoFiller: utilising data from multiple species to improve the completeness of genome annotations.

作者信息

Dunne Michael P, Kelly Steven

机构信息

Department of Plant Sciences, University of Oxford, South Parks Road, Oxford, OX1 3RB, UK.

出版信息

BMC Genomics. 2017 May 18;18(1):390. doi: 10.1186/s12864-017-3771-x.


DOI:10.1186/s12864-017-3771-x
PMID:28521726
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC5437544/
Abstract

BACKROUND: Complete and accurate annotation of sequenced genomes is of paramount importance to their utility and analysis. Differences in gene prediction pipelines mean that genome annotations for a species can differ considerably in the quality and quantity of their predicted genes. Furthermore, genes that are present in genome sequences sometimes fail to be detected by computational gene prediction methods. Erroneously unannotated genes can lead to oversights and inaccurate assertions in biological investigations, especially for smaller-scale genome projects, which rely heavily on computational prediction. RESULTS: Here we present OrthoFiller, a tool designed to address the problem of finding and adding such missing genes to genome annotations. OrthoFiller leverages information from multiple related species to identify those genes whose existence can be verified through comparison with known gene families, but which have not been predicted. By simulating missing gene annotations in real sequence datasets from both plants and fungi we demonstrate the accuracy and utility of OrthoFiller for finding missing genes and improving genome annotations. Furthermore, we show that applying OrthoFiller to existing "complete" genome annotations can identify and correct substantial numbers of erroneously missing genes in these two sets of species. CONCLUSIONS: We show that significant improvements in the completeness of genome annotations can be made by leveraging information from multiple species.

摘要
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4353/5437544/7d4b10a1ff2c/12864_2017_3771_Fig8_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4353/5437544/38e4567d7373/12864_2017_3771_Fig1_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4353/5437544/2a0f59e70f2d/12864_2017_3771_Fig2_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4353/5437544/d0e9c20f8649/12864_2017_3771_Fig3_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4353/5437544/51ee7d208338/12864_2017_3771_Fig4_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4353/5437544/8a565b372f81/12864_2017_3771_Fig5_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4353/5437544/b594a3218236/12864_2017_3771_Fig6_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4353/5437544/d2c61746b024/12864_2017_3771_Fig7_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4353/5437544/7d4b10a1ff2c/12864_2017_3771_Fig8_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4353/5437544/38e4567d7373/12864_2017_3771_Fig1_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4353/5437544/2a0f59e70f2d/12864_2017_3771_Fig2_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4353/5437544/d0e9c20f8649/12864_2017_3771_Fig3_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4353/5437544/51ee7d208338/12864_2017_3771_Fig4_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4353/5437544/8a565b372f81/12864_2017_3771_Fig5_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4353/5437544/b594a3218236/12864_2017_3771_Fig6_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4353/5437544/d2c61746b024/12864_2017_3771_Fig7_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4353/5437544/7d4b10a1ff2c/12864_2017_3771_Fig8_HTML.jpg

相似文献

[1]
OrthoFiller: utilising data from multiple species to improve the completeness of genome annotations.

BMC Genomics. 2017-5-18

[2]
CodingQuarry: highly accurate hidden Markov model gene prediction in fungal genomes using RNA-seq transcripts.

BMC Genomics. 2015-3-11

[3]
GASS: genome structural annotation for Eukaryotes based on species similarity.

BMC Genomics. 2015-3-4

[4]
CvManGO, a method for leveraging computational predictions to improve literature-based Gene Ontology annotations.

Database (Oxford). 2012-3-20

[5]
Saccharomyces cerevisiae: gene annotation and genome variability, state of the art through comparative genomics.

Methods Mol Biol. 2011

[6]
zDB: bacterial comparative genomics made easy.

mSystems. 2024-7-23

[7]
Using computational predictions to improve literature-based Gene Ontology annotations: a feasibility study.

Database (Oxford). 2011-3-15

[8]
OMGene: mutual improvement of gene models through optimisation of evolutionary conservation.

BMC Genomics. 2018-4-27

[9]
BEACON: automated tool for Bacterial GEnome Annotation ComparisON.

BMC Genomics. 2015-8-18

[10]
High-throughput comparison, functional annotation, and metabolic modeling of plant genomes using the PlantSEED resource.

Proc Natl Acad Sci U S A. 2014-6-9

引用本文的文献

[1]
Endophyte genomes support greater metabolic gene cluster diversity compared with non-endophytes in Trichoderma.

PLoS One. 2023

[2]
Leveraging genomic redundancy to improve inference and alignment of orthologous proteins.

G3 (Bethesda). 2023-12-6

[3]
Whole-Genome Sequence Data for the Holotype Strain of Diaporthe ilicicola, a Fungus Associated with Latent Fruit Rot in Deciduous Holly.

Microbiol Resour Announc. 2022-9-15

[4]
Giant Starship Elements Mobilize Accessory Genes in Fungal Genomes.

Mol Biol Evol. 2022-5-3

[5]
The state of Medusozoa genomics: current evidence and future challenges.

Gigascience. 2022-5-17

[6]
Draft Genome Sequence of the Termite-Associated "Cuckoo Fungus," () sp. TMB Strain TB5.

Microbiol Resour Announc. 2021-1-7

[7]
Machine learning: A powerful tool for gene function prediction in plants.

Appl Plant Sci. 2020-7-28

[8]
What Is in Umbilicaria pustulata? A Metagenomic Approach to Reconstruct the Holo-Genome of a Lichen.

Genome Biol Evol. 2020-4-1

[9]
TaF: a web platform for taxonomic profile-based fungal gene prediction.

Genes Genomics. 2019-3

[10]
ImproveAssembly - Tool for identifying new gene products and improving genome assembly.

PLoS One. 2018-10-26

本文引用的文献

[1]
Are We There Yet? Reliably Estimating the Completeness of Plant Genome Sequences.

Plant Cell. 2016-8

[2]
OrthoFinder: solving fundamental biases in whole genome comparisons dramatically improves orthogroup inference accuracy.

Genome Biol. 2015-8-6

[3]
BUSCO: assessing genome assembly and annotation completeness with single-copy orthologs.

Bioinformatics. 2015-6-9

[4]
HISAT: a fast spliced aligner with low memory requirements.

Nat Methods. 2015-4

[5]
Extensive error in the number of genes inferred from draft genome assemblies.

PLoS Comput Biol. 2014-12-4

[6]
Sequencing of diverse mandarin, pummelo and orange genomes reveals complex history of admixture during citrus domestication.

Nat Biotechnol. 2014-6-8

[7]
The Brassica oleracea genome reveals the asymmetrical evolution of polyploid genomes.

Nat Commun. 2014-5-23

[8]
Technology: The $1,000 genome.

Nature. 2014-3-20

[9]
Automated alignment-based curation of gene models in filamentous fungi.

BMC Bioinformatics. 2014-1-16

[10]
MAFFT multiple sequence alignment software version 7: improvements in performance and usability.

Mol Biol Evol. 2013-1-16

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索