Liu Shengyi, Liu Yumei, Yang Xinhua, Tong Chaobo, Edwards David, Parkin Isobel A P, Zhao Meixia, Ma Jianxin, Yu Jingyin, Huang Shunmou, Wang Xiyin, Wang Junyi, Lu Kun, Fang Zhiyuan, Bancroft Ian, Yang Tae-Jin, Hu Qiong, Wang Xinfa, Yue Zhen, Li Haojie, Yang Linfeng, Wu Jian, Zhou Qing, Wang Wanxin, King Graham J, Pires J Chris, Lu Changxin, Wu Zhangyan, Sampath Perumal, Wang Zhuo, Guo Hui, Pan Shengkai, Yang Limei, Min Jiumeng, Zhang Dong, Jin Dianchuan, Li Wanshun, Belcram Harry, Tu Jinxing, Guan Mei, Qi Cunkou, Du Dezhi, Li Jiana, Jiang Liangcai, Batley Jacqueline, Sharpe Andrew G, Park Beom-Seok, Ruperao Pradeep, Cheng Feng, Waminal Nomar Espinosa, Huang Yin, Dong Caihua, Wang Li, Li Jingping, Hu Zhiyong, Zhuang Mu, Huang Yi, Huang Junyan, Shi Jiaqin, Mei Desheng, Liu Jing, Lee Tae-Ho, Wang Jinpeng, Jin Huizhe, Li Zaiyun, Li Xun, Zhang Jiefu, Xiao Lu, Zhou Yongming, Liu Zhongsong, Liu Xuequn, Qin Rui, Tang Xu, Liu Wenbin, Wang Yupeng, Zhang Yangyong, Lee Jonghoon, Kim Hyun Hee, Denoeud France, Xu Xun, Liang Xinming, Hua Wei, Wang Xiaowu, Wang Jun, Chalhoub Boulos, Paterson Andrew H
1] The Key Laboratory of Biology and Genetic Improvement of Oil Crops, The Ministry of Agriculture of PRC, Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan 430062, China [2].
1] The Key Laboratory of Biology and Genetic Improvement of Horticultural Crops, The Ministry of Agriculture, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 10081, China [2].
Nat Commun. 2014 May 23;5:3930. doi: 10.1038/ncomms4930.
Polyploidization has provided much genetic variation for plant adaptive evolution, but the mechanisms by which the molecular evolution of polyploid genomes establishes genetic architecture underlying species differentiation are unclear. Brassica is an ideal model to increase knowledge of polyploid evolution. Here we describe a draft genome sequence of Brassica oleracea, comparing it with that of its sister species B. rapa to reveal numerous chromosome rearrangements and asymmetrical gene loss in duplicated genomic blocks, asymmetrical amplification of transposable elements, differential gene co-retention for specific pathways and variation in gene expression, including alternative splicing, among a large number of paralogous and orthologous genes. Genes related to the production of anticancer phytochemicals and morphological variations illustrate consequences of genome duplication and gene divergence, imparting biochemical and morphological variation to B. oleracea. This study provides insights into Brassica genome evolution and will underpin research into the many important crops in this genus.
多倍体化给植物适应性进化提供了大量遗传变异,但多倍体基因组分子进化建立物种分化潜在遗传结构的机制尚不清楚。甘蓝属植物是增进多倍体进化知识的理想模式植物。在此,我们描述了甘蓝(Brassica oleracea)的基因组草图序列,并将其与其姊妹物种白菜(B. rapa)的基因组序列进行比较,以揭示重复基因组区域中大量的染色体重排和不对称基因丢失、转座元件的不对称扩增、特定途径中基因的差异共保留以及大量旁系同源基因和直系同源基因间基因表达的变化,包括可变剪接。与抗癌植物化学物质产生和形态变异相关的基因说明了基因组加倍和基因分歧的后果,赋予了甘蓝生化和形态上的变异。本研究为甘蓝基因组进化提供了见解,并将为该属众多重要作物的研究奠定基础。