Department of Civil Engineering, Regional Campus, Anna University, Tirunelveli, India.
Department of Civil Engineering, Regional Campus, Anna University, Tirunelveli, India.
Bioresour Technol. 2017 Nov;244(Pt 2):1367-1375. doi: 10.1016/j.biortech.2017.05.007. Epub 2017 May 4.
The present study investigates the synergistic effect of combined bacterial disintegration on mixed microalgal biomass for energy efficient biomethane generation. The rate of microalgal biomass lysis, enhanced biodegradability, and methane generation were used as indices to assess efficiency of the disintegration. A maximal dissolvable organics release and algal biomass lysis rate of about 1100, 950 and 800mg/L and 26, 23 and 18% was achieved in PA+C (protease, amylase+cellulase secreting bacteria), C (cellulase alone) and PA (protease, amylase) microalgal disintegration. During anaerobic fermentation, a greater production of volatile fatty acids (1000mg/L) was noted in PA+C bacterial disintegration of microalgal biomass. PA+C bacterial disintegration improve the amenability of microalgal biomass to biomethanation process with higher biodegradability of about 0.27gCOD/gCOD, respectively. The energy balance analysis of this combined bacterial disintegration of microalgal biomass provides surplus positive net energy (1.14GJ/d) by compensating the input energy requirements.
本研究考察了联合细菌分解对混合微藻生物质的协同作用,以实现高效的生物甲烷生成。微藻生物质裂解率、增强的生物降解性和甲烷生成率被用作评估效率的指标。在 PA+C(蛋白酶、淀粉酶+纤维素分解菌)、C(单独纤维素酶)和 PA(蛋白酶、淀粉酶)微藻分解中,可溶有机物的最大释放量和藻生物质裂解率约为 1100、950 和 800mg/L 以及 26、23 和 18%。在厌氧发酵过程中,在 PA+C 细菌分解微藻生物质中观察到更多的挥发性脂肪酸(1000mg/L)产生。PA+C 细菌分解提高了微藻生物质对生物甲烷化过程的可接受性,生物降解性分别提高了约 0.27gCOD/gCOD。通过补偿输入能量需求,这种联合细菌分解微藻生物质的能量平衡分析提供了正的净能量盈余(1.14GJ/d)。