Suppr超能文献

高效修饰 λ-DNA 底物用于单分子研究。

Efficient modification of λ-DNA substrates for single-molecule studies.

机构信息

Department of Molecular Biosciences and Institute for Cellular and Molecular Biology, The University of Texas at Austin, Austin, Texas, 78712, USA.

Center for Systems and Synthetic Biology, The University of Texas at Austin, Austin, Texas, 78712, USA.

出版信息

Sci Rep. 2017 May 18;7(1):2071. doi: 10.1038/s41598-017-01984-x.

Abstract

Single-molecule studies of protein-nucleic acid interactions frequently require site-specific modification of long DNA substrates. The bacteriophage λ is a convenient source of high quality long (48.5 kb) DNA. However, introducing specific sequences, tertiary structures, and chemical modifications into λ-DNA remains technically challenging. Most current approaches rely on multi-step ligations with low yields and incomplete products. Here, we describe a molecular toolkit for rapid preparation of modified λ-DNA. A set of PCR cassettes facilitates the introduction of recombinant DNA sequences into the λ-phage genome with 90-100% yield. Extrahelical structures and chemical modifications can be inserted at user-defined sites via an improved nicking enzyme-based strategy. As a proof-of-principle, we explore the interactions of S. cerevisiae Proliferating Cell Nuclear Antigen (yPCNA) with modified DNA sequences and structures incorporated within λ-DNA. Our results demonstrate that S. cerevisiae Replication Factor C (yRFC) can load yPCNA onto 5'-ssDNA flaps, (CAG) triplet repeats, and homoduplex DNA. However, yPCNA remains trapped on the (CAG) structure, confirming a proposed mechanism for triplet repeat expansion. We anticipate that this molecular toolbox will be broadly useful for other studies that require site-specific modification of long DNA substrates.

摘要

蛋白质-核酸相互作用的单分子研究经常需要对长 DNA 底物进行特异性修饰。噬菌体 λ 是高质量长(48.5kb)DNA 的便利来源。然而,将特定序列、三级结构和化学修饰引入 λ-DNA 仍然具有技术挑战性。目前大多数方法依赖于低产量和不完全产物的多步连接。在这里,我们描述了一种用于快速制备修饰的 λ-DNA 的分子工具包。一组 PCR 盒可实现重组 DNA 序列以 90-100%的产率引入 λ 噬菌体基因组。通过改进的切口酶基策略,可以在用户定义的位点插入螺旋外结构和化学修饰。作为原理验证,我们探索了酿酒酵母增殖细胞核抗原(yPCNA)与掺入 λ-DNA 中的修饰 DNA 序列和结构的相互作用。我们的结果表明,酿酒酵母复制因子 C(yRFC)可以将 yPCNA 加载到 5'-ssDNA 瓣、(CAG)三重复序列和同源双链 DNA 上。然而,yPCNA 仍被困在(CAG)结构上,证实了三重复扩展的拟议机制。我们预计这个分子工具箱将广泛用于其他需要对长 DNA 底物进行特异性修饰的研究。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/195c/5437064/f506fdadd33b/41598_2017_1984_Fig1_HTML.jpg

相似文献

1
Efficient modification of λ-DNA substrates for single-molecule studies.
Sci Rep. 2017 May 18;7(1):2071. doi: 10.1038/s41598-017-01984-x.
2
Inserting Extrahelical Structures into Long DNA Substrates for Single-Molecule Studies of DNA Mismatch Repair.
Methods Enzymol. 2017;582:221-238. doi: 10.1016/bs.mie.2016.08.006. Epub 2016 Oct 24.
3
The beta protein of phage lambda binds preferentially to an intermediate in DNA renaturation.
J Mol Biol. 1998 Mar 6;276(4):721-31. doi: 10.1006/jmbi.1997.1573.
6
The beta protein of phage lambda promotes strand exchange.
J Mol Biol. 1998 Mar 6;276(4):733-44. doi: 10.1006/jmbi.1997.1572.
7
Design of customizable long linear DNA substrates with controlled end modifications for single-molecule studies.
Anal Biochem. 2020 Mar 1;592:113541. doi: 10.1016/j.ab.2019.113541. Epub 2019 Dec 20.
10
Site-specific recombination intermediates trapped with suicide substrates.
Cell. 1987 Aug 28;50(5):779-88. doi: 10.1016/0092-8674(87)90336-9.

引用本文的文献

2
Visualizing the dynamics of DNA replication and repair at the single-molecule level.
Methods Cell Biol. 2024;182:109-165. doi: 10.1016/bs.mcb.2023.07.001. Epub 2023 Aug 10.
3
De novo fabrication of custom-sequence plasmids for the synthesis of long DNA constructs with extrahelical features.
Biophys J. 2024 Jan 2;123(1):31-41. doi: 10.1016/j.bpj.2023.11.008. Epub 2023 Nov 15.
5
Efficient golden gate assembly of DNA constructs for single molecule force spectroscopy and imaging.
Nucleic Acids Res. 2022 Jul 22;50(13):e77. doi: 10.1093/nar/gkac300.
6
High-yield purification of exceptional-quality, single-molecule DNA substrates.
J Biol Methods. 2021 Feb 24;8(1):e145. doi: 10.14440/jbm.2021.350. eCollection 2021.
7
Systematic Discovery of Endogenous Human Ribonucleoprotein Complexes.
Cell Rep. 2019 Oct 29;29(5):1351-1368.e5. doi: 10.1016/j.celrep.2019.09.060.
8
A simple dialysis device for large DNA molecules.
Biotechniques. 2019 Feb;66(2):93-95. doi: 10.2144/btn-2018-0133.
10
Assembly and Translocation of a CRISPR-Cas Primed Acquisition Complex.
Cell. 2018 Nov 1;175(4):934-946.e15. doi: 10.1016/j.cell.2018.09.039. Epub 2018 Oct 18.

本文引用的文献

2
Single-molecule imaging reveals the mechanism of Exo1 regulation by single-stranded DNA binding proteins.
Proc Natl Acad Sci U S A. 2016 Mar 1;113(9):E1170-9. doi: 10.1073/pnas.1516674113. Epub 2016 Feb 16.
4
Disease-associated repeat instability and mismatch repair.
DNA Repair (Amst). 2016 Feb;38:117-126. doi: 10.1016/j.dnarep.2015.11.008. Epub 2015 Dec 12.
5
Simultaneous Single-Molecule Force and Fluorescence Sampling of DNA Nanostructure Conformations Using Magnetic Tweezers.
Nano Lett. 2016 Jan 13;16(1):381-6. doi: 10.1021/acs.nanolett.5b03956. Epub 2015 Dec 11.
6
High-Throughput Universal DNA Curtain Arrays for Single-Molecule Fluorescence Imaging.
Langmuir. 2015 Sep 22;31(37):10310-7. doi: 10.1021/acs.langmuir.5b02416. Epub 2015 Sep 8.
7
DNA motion capture reveals the mechanical properties of DNA at the mesoscale.
Biophys J. 2015 May 19;108(10):2532-2540. doi: 10.1016/j.bpj.2015.04.022.
8
Bacterial Recombineering: Genome Engineering via Phage-Based Homologous Recombination.
ACS Synth Biol. 2015 Nov 20;4(11):1176-85. doi: 10.1021/acssynbio.5b00009. Epub 2015 Apr 27.
9
Asymmetric unwrapping of nucleosomes under tension directed by DNA local flexibility.
Cell. 2015 Mar 12;160(6):1135-44. doi: 10.1016/j.cell.2015.02.001.
10
DNA triplet repeat expansion and mismatch repair.
Annu Rev Biochem. 2015;84:199-226. doi: 10.1146/annurev-biochem-060614-034010. Epub 2015 Jan 2.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验