Department of Molecular Biosciences and Institute for Cellular and Molecular Biology, The University of Texas at Austin, Austin, Texas, 78712, USA.
Center for Systems and Synthetic Biology, The University of Texas at Austin, Austin, Texas, 78712, USA.
Sci Rep. 2017 May 18;7(1):2071. doi: 10.1038/s41598-017-01984-x.
Single-molecule studies of protein-nucleic acid interactions frequently require site-specific modification of long DNA substrates. The bacteriophage λ is a convenient source of high quality long (48.5 kb) DNA. However, introducing specific sequences, tertiary structures, and chemical modifications into λ-DNA remains technically challenging. Most current approaches rely on multi-step ligations with low yields and incomplete products. Here, we describe a molecular toolkit for rapid preparation of modified λ-DNA. A set of PCR cassettes facilitates the introduction of recombinant DNA sequences into the λ-phage genome with 90-100% yield. Extrahelical structures and chemical modifications can be inserted at user-defined sites via an improved nicking enzyme-based strategy. As a proof-of-principle, we explore the interactions of S. cerevisiae Proliferating Cell Nuclear Antigen (yPCNA) with modified DNA sequences and structures incorporated within λ-DNA. Our results demonstrate that S. cerevisiae Replication Factor C (yRFC) can load yPCNA onto 5'-ssDNA flaps, (CAG) triplet repeats, and homoduplex DNA. However, yPCNA remains trapped on the (CAG) structure, confirming a proposed mechanism for triplet repeat expansion. We anticipate that this molecular toolbox will be broadly useful for other studies that require site-specific modification of long DNA substrates.
蛋白质-核酸相互作用的单分子研究经常需要对长 DNA 底物进行特异性修饰。噬菌体 λ 是高质量长(48.5kb)DNA 的便利来源。然而,将特定序列、三级结构和化学修饰引入 λ-DNA 仍然具有技术挑战性。目前大多数方法依赖于低产量和不完全产物的多步连接。在这里,我们描述了一种用于快速制备修饰的 λ-DNA 的分子工具包。一组 PCR 盒可实现重组 DNA 序列以 90-100%的产率引入 λ 噬菌体基因组。通过改进的切口酶基策略,可以在用户定义的位点插入螺旋外结构和化学修饰。作为原理验证,我们探索了酿酒酵母增殖细胞核抗原(yPCNA)与掺入 λ-DNA 中的修饰 DNA 序列和结构的相互作用。我们的结果表明,酿酒酵母复制因子 C(yRFC)可以将 yPCNA 加载到 5'-ssDNA 瓣、(CAG)三重复序列和同源双链 DNA 上。然而,yPCNA 仍被困在(CAG)结构上,证实了三重复扩展的拟议机制。我们预计这个分子工具箱将广泛用于其他需要对长 DNA 底物进行特异性修饰的研究。