Waseda University, Graduate School of Advanced Science and Engineering, Tokyo, Japan.
Hamamatsu Photonics K. K., Central Research Laboratory, Sizuoka, Japan.
Sci Rep. 2017 May 18;7(1):2110. doi: 10.1038/s41598-017-02377-w.
In the field of nuclear medicine, single photon emission tomography and positron emission tomography are the two most common techniques in molecular imaging, but the available radioactive tracers have been limited either by energy range or difficulties in production and delivery. Thus, the use of a Compton camera, which features gamma-ray imaging of arbitrary energies from a few hundred keV to more than MeV, is eagerly awaited along with potential new tracers which have never been used in current modalities. In this paper, we developed an ultra-compact Compton camera that weighs only 580 g. The camera consists of fine-pixelized Ce-doped GdAlGaO scintillators coupled with multi-pixel photon counter arrays. We first investigated the 3-D imaging capability of our camera system for a diffuse source of a planar geometry, and then conducted small animal imaging as pre-clinical evaluation. For the first time, we successfully carried out the 3-D color imaging of a live mouse in just 2 h. By using tri-color gamma-ray fusion images, we confirmed that I, Sr, and Zn can be new tracers that concentrate in each target organ.
在核医学领域,单光子发射断层扫描和正电子发射断层扫描是分子成像中最常用的两种技术,但可用的放射性示踪剂要么受到能量范围的限制,要么由于生产和输送困难而受到限制。因此,人们急切地期待着使用康普顿相机,这种相机能够对从几百 keV 到超过 MeV 的任意能量的伽马射线进行成像,同时也期待着使用当前模态从未使用过的潜在新型示踪剂。在本文中,我们开发了一种重量仅为 580g 的超紧凑型康普顿相机。该相机由精细像素化的掺铈钆铝镓氧闪烁体与多像素光子计数器阵列耦合而成。我们首先研究了我们的相机系统对平面几何漫射源的 3D 成像能力,然后进行了小动物成像作为临床前评估。我们首次成功地在 2 小时内对活体小鼠进行了 3D 彩色成像。通过使用三色伽马射线融合图像,我们证实 I、Sr 和 Zn 可以成为集中在每个靶器官的新型示踪剂。