Suppr超能文献

二维医学图像上计算视觉注意力模型的比较研究

Comparative study of computational visual attention models on two-dimensional medical images.

作者信息

Wen Gezheng, Rodriguez-Niño Brenda, Pecen Furkan Y, Vining David J, Garg Naveen, Markey Mia K

机构信息

The University of Texas at Austin, Electrical and Computer Engineering, Austin, Texas, United States.

The University of Texas MD Anderson Cancer Center, Diagnostic Radiology, Houston, Texas, United States.

出版信息

J Med Imaging (Bellingham). 2017 Apr;4(2):025503. doi: 10.1117/1.JMI.4.2.025503. Epub 2017 May 10.

Abstract

Computational modeling of visual attention is an active area of research. These models have been successfully employed in applications such as robotics. However, most computational models of visual attention are developed in the context of natural scenes, and their role with medical images is not well investigated. As radiologists interpret a large number of clinical images in a limited time, an efficient strategy to deploy their visual attention is necessary. Visual saliency maps, highlighting image regions that differ dramatically from their surroundings, are expected to be predictive of where radiologists fixate their gaze. We compared 16 state-of-art saliency models over three medical imaging modalities. The estimated saliency maps were evaluated against radiologists' eye movements. The results show that the models achieved competitive accuracy using three metrics, but the rank order of the models varied significantly across the three modalities. Moreover, the model ranks on the medical images were all considerably different from the model ranks on the benchmark MIT300 dataset of natural images. Thus, modality-specific tuning of saliency models is necessary to make them valuable for applications in fields such as medical image compression and radiology education.

摘要

视觉注意力的计算建模是一个活跃的研究领域。这些模型已成功应用于机器人技术等领域。然而,大多数视觉注意力计算模型是在自然场景的背景下开发的,它们在医学图像中的作用尚未得到充分研究。由于放射科医生在有限的时间内要解读大量临床图像,因此需要一种有效的策略来部署他们的视觉注意力。视觉显著性图突出显示与周围环境有显著差异的图像区域,有望预测放射科医生注视的位置。我们在三种医学成像模态上比较了16种最先进的显著性模型。根据放射科医生的眼动对估计的显著性图进行评估。结果表明,这些模型使用三种指标达到了有竞争力的准确率,但模型的排名顺序在三种模态之间有显著差异。此外,医学图像上的模型排名与自然图像基准MIT300数据集上的模型排名有很大不同。因此,有必要对显著性模型进行特定模态的调整,使其在医学图像压缩和放射学教育等领域的应用中有价值。

相似文献

5
Saliency-driven system models for cell analysis with deep learning.基于深度学习的细胞分析的显著驱动系统模型。
Comput Methods Programs Biomed. 2019 Dec;182:105053. doi: 10.1016/j.cmpb.2019.105053. Epub 2019 Aug 26.
6
Computational assessment of visual search strategies in volumetric medical images.容积医学图像中视觉搜索策略的计算评估
J Med Imaging (Bellingham). 2016 Jan;3(1):015501. doi: 10.1117/1.JMI.3.1.015501. Epub 2016 Jan 6.

本文引用的文献

1
What Do Different Evaluation Metrics Tell Us About Saliency Models?不同的评估指标能告诉我们关于显著性模型的哪些信息?
IEEE Trans Pattern Anal Mach Intell. 2019 Mar;41(3):740-757. doi: 10.1109/TPAMI.2018.2815601. Epub 2018 Mar 13.
2
Computational assessment of visual search strategies in volumetric medical images.容积医学图像中视觉搜索策略的计算评估
J Med Imaging (Bellingham). 2016 Jan;3(1):015501. doi: 10.1117/1.JMI.3.1.015501. Epub 2016 Jan 6.
10
State-of-the-art in visual attention modeling.视觉注意建模的最新进展。
IEEE Trans Pattern Anal Mach Intell. 2013 Jan;35(1):185-207. doi: 10.1109/TPAMI.2012.89.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验