Krieger Lisa K, Szeitz András, Bandiera Stelvio M
Faculty of Pharmaceutical Sciences, The University of British Columbia, Vancouver, British Columbia, V6T 1Z3, Canada.
Faculty of Pharmaceutical Sciences, The University of British Columbia, Vancouver, British Columbia, V6T 1Z3, Canada.
Chemosphere. 2017 Sep;182:559-566. doi: 10.1016/j.chemosphere.2017.05.027. Epub 2017 May 10.
In the present study, we investigated the oxidative biotransformation of 2,2',4,4'-tetrabromodiphenyl ether (BDE-47) and 2,2',4,4',5-pentabromodiphenyl ether (BDE-99) by liver microsomes from wild lesser snow geese (Chen caerulescens caerulescens) and domesticated Japanese quail (Coturnix japonica). Formation of hydroxy-metabolites was analyzed using an ultra-high performance liquid chromatography-tandem mass spectrometry-based method. Incubation of BDE-47 with avian liver microsomes produced sixteen hydroxy-metabolites, eight of which were identified using authentic standards. The major metabolites formed by liver microsomes from individual lesser snow geese were 4-hydroxy-2,2',3,4'-tetrabromodiphenyl ether (4-OH-BDE-42), 3-hydroxy-2,2',4,4'-tetrabromodiphenyl ether (3-OH-BDE-47), and 4'-hydroxy-2,2',4,5'-tetrabromodiphenyl ether (4'-OH-BDE-49). By comparison, 4-OH-BDE-42 and 4'-OH-BDE-49, but not 3-OH-BDE-47, were major metabolites of Japanese quail liver microsomes. Unidentified metabolites included monohydroxy- and dihydroxy-tetrabromodiphenyl ethers. Incubation of BDE-99 with avian liver microsomes produced seventeen hydroxy-metabolites, twelve of which were identified using authentic standards. The major metabolites formed by lesser snow goose liver microsomes were 2,4,5-tribromophenol, 3-OH-BDE-47, 4'-OH-BDE-49, 4-hydroxy-2,2',3,4',5-pentabromodiphenyl ether (4-OH-BDE-90), and 5'-hydroxy-2,2',4,4',5-pentabromodiphenyl ether (5'-OH-BDE-99). By comparison, the major metabolites produced by liver microsomes from Japanese quail included 6-hydroxy-2,2',4,4'-tetrabromodiphenyl ether (6-OH-BDE-47) and 2-hydroxy-2',3,4,4',5-pentabromodiphenyl ether (2-OH-BDE-123), but not 3-OH-BDE-47. Unidentified metabolites consisted of monohydroxy-pentabromodiphenyl ethers, monohydroxy-tetrabromodiphenyl ethers and dihydroxy-tetrabromodiphenyl ethers. Another difference between the two species was that formation rates of BDE-47 and BDE-99 metabolites were greater with liver microsomes from male than female Japanese quail, but a sex difference was not observed with lesser snow geese.
在本研究中,我们研究了野生小雪雁(Chen caerulescens caerulescens)和驯化的日本鹌鹑(Coturnix japonica)肝脏微粒体对2,2',4,4'-四溴二苯醚(BDE-47)和2,2',4,4',5-五溴二苯醚(BDE-99)的氧化生物转化。使用基于超高效液相色谱-串联质谱的方法分析羟基代谢物的形成。BDE-47与禽类肝脏微粒体孵育产生了16种羟基代谢物,其中8种使用标准品进行了鉴定。来自个体小雪雁的肝脏微粒体形成的主要代谢物为4-羟基-2,2',3,4'-四溴二苯醚(4-OH-BDE-42)、3-羟基-2,2',4,4'-四溴二苯醚(3-OH-BDE-47)和4'-羟基-2,2',4,5'-四溴二苯醚(4'-OH-BDE-49)。相比之下,4-OH-BDE-42和4'-OH-BDE-49是日本鹌鹑肝脏微粒体的主要代谢物,而3-OH-BDE-47不是。未鉴定的代谢物包括单羟基和二羟基四溴二苯醚。BDE-99与禽类肝脏微粒体孵育产生了17种羟基代谢物,其中12种使用标准品进行了鉴定。小雪雁肝脏微粒体形成的主要代谢物为2,4,5-三溴苯酚、3-OH-BDE-47、4'-OH-BDE-49、4-羟基-2,2',3,4',5-五溴二苯醚(4-OH-BDE-90)和5'-羟基-2,2',4,4',5-五溴二苯醚(5'-OH-BDE-99)。相比之下,日本鹌鹑肝脏微粒体产生的主要代谢物包括6-羟基-2,2',4,4'-四溴二苯醚(6-OH-BDE-47)和2-羟基-2',3,4,4',5-五溴二苯醚(2-OH-BDE-123),但3-OH-BDE-47不是。未鉴定的代谢物由单羟基五溴二苯醚、单羟基四溴二苯醚和二羟基四溴二苯醚组成。这两个物种之间的另一个差异是,日本鹌鹑雄性肝脏微粒体对BDE-47和BDE-99代谢物的形成速率高于雌性,但在小雪雁中未观察到性别差异。