Suppr超能文献

基于加权蛋白质-蛋白质相互作用网络的乳腺癌预后模块识别

Identification of breast cancer prognostic modules based on weighted protein-protein interaction networks.

作者信息

Li Wan, Bai Xue, Hu Erqiang, Huang Hao, Li Yiran, He Yuehan, Lv Junjie, Chen Lina, He Weiming

机构信息

College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, Heilongjiang 150086, P.R. China.

Institute of Opto-electronics, Harbin Institute of Technology, Harbin, Heilongjiang 150001, P.R. China.

出版信息

Oncol Lett. 2017 May;13(5):3935-3941. doi: 10.3892/ol.2017.5917. Epub 2017 Mar 27.

Abstract

Breast cancer is one of the leading causes of mortality in females. A number of prognostic markers have been identified, including single genes, multi-gene signatures and network modules; however, the robustness of these prognostic markers is insufficient. Thus, the present study proposed a more robust method to identify breast cancer prognostic modules based on weighted protein-protein interaction networks, by integrating four sets of disease-associated expression profiles. Three identified prognostic modules were closely associated with prognosis-associated functions and survival time, as determined by Cox regression and Kaplan-Meier survival analyses. The robustness of these modules was verified with an independent profile from another platform. Genes from these modules may be useful as breast cancer prognostic markers. The prognostic modules could be used to determine the prognoses of patients with breast cancer and characterize patient recovery.

摘要

乳腺癌是女性死亡的主要原因之一。已经确定了许多预后标志物,包括单基因、多基因特征和网络模块;然而,这些预后标志物的稳健性不足。因此,本研究提出了一种更稳健的方法,通过整合四组疾病相关表达谱,基于加权蛋白质-蛋白质相互作用网络来识别乳腺癌预后模块。通过Cox回归和Kaplan-Meier生存分析确定,三个识别出的预后模块与预后相关功能和生存时间密切相关。这些模块的稳健性通过来自另一个平台的独立图谱得到验证。来自这些模块的基因可能作为乳腺癌预后标志物有用。这些预后模块可用于确定乳腺癌患者的预后并表征患者的恢复情况。

相似文献

本文引用的文献

2
Global cancer statistics, 2012.全球癌症统计数据,2012 年。
CA Cancer J Clin. 2015 Mar;65(2):87-108. doi: 10.3322/caac.21262. Epub 2015 Feb 4.
3
Gene Ontology Consortium: going forward.基因本体论联盟:展望未来。
Nucleic Acids Res. 2015 Jan;43(Database issue):D1049-56. doi: 10.1093/nar/gku1179. Epub 2014 Nov 26.
10
Data, information, knowledge and principle: back to metabolism in KEGG.数据、信息、知识和原理:回到 KEGG 的代谢途径中。
Nucleic Acids Res. 2014 Jan;42(Database issue):D199-205. doi: 10.1093/nar/gkt1076. Epub 2013 Nov 7.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验