Suppr超能文献

解离吸附水在TiO光催化剂中浅俘获电子形成过程中的作用

Role of Dissociatively Adsorbed Water on the Formation of Shallow Trapped Electrons in TiO Photocatalysts.

作者信息

Litke Anton, Hensen Emiel J M, Hofmann Jan P

机构信息

Laboratory of Inorganic Materials Chemistry, Department of Chemical Engineering and Chemistry, Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven, The Netherlands.

出版信息

J Phys Chem C Nanomater Interfaces. 2017 May 11;121(18):10153-10162. doi: 10.1021/acs.jpcc.7b01151. Epub 2017 Apr 20.

Abstract

The mismatch between short lifetimes of free charge carriers and slow kinetics of surface redox reactions substantially limits the efficiency of most photocatalytic systems. Hence, the knowledge of trapping and recombination of photogenerated electrons and holes at different time scales is key for a rational optimization of photocatalytic materials. In this study, we used subsecond time-resolved diffuse-reflectance FTIR spectroscopy to investigate how energy and intensity of the incident irradiation affect the dynamics of photogenerated charge carriers in TiO P25 photocatalysts subjected to different pretreatments and how shallow trapped electrons (STE) are formed under these conditions. Intensity-dependent measurements demonstrated that electrons and holes generated by 325 and 409 nm irradiation undergo bimolecular and trap-assisted recombination, respectively. Analysis of characteristic times of photogenerated electron absorption rise and decay indicated that the apparent charge carrier dynamics at the time scale of seconds to minutes relate to chemical trapping of photogenerated electrons and holes. The presence of dissociatively adsorbed water on the oxide surface was required for efficient STE formation. This suggests that STE form at the seconds-minutes time scale upon surface-mediated self-trapping of electrons.

摘要

自由电荷载流子的短寿命与表面氧化还原反应的缓慢动力学之间的不匹配极大地限制了大多数光催化系统的效率。因此,了解光生电子和空穴在不同时间尺度上的俘获和复合情况是合理优化光催化材料的关键。在本研究中,我们使用亚秒级时间分辨漫反射傅里叶变换红外光谱来研究入射辐射的能量和强度如何影响经过不同预处理的TiO P25光催化剂中光生电荷载流子的动力学,以及在这些条件下浅俘获电子(STE)是如何形成的。强度依赖性测量表明,325和409 nm辐射产生的电子和空穴分别经历双分子复合和陷阱辅助复合。对光生电子吸收上升和衰减特征时间的分析表明,秒到分钟时间尺度上的表观电荷载流子动力学与光生电子和空穴的化学俘获有关。高效形成STE需要氧化物表面存在解离吸附的水。这表明STE是在表面介导的电子自俘获过程中在秒至分钟的时间尺度上形成的。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/965d/5432959/2d8f6bd8cd87/jp-2017-01151f_0007.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验