Suppr超能文献

肌钙蛋白C突变部分稳定了调节性肌动蛋白的活性状态,当与Δ14肌钙蛋白T配对时则完全稳定了活性状态。

Troponin C Mutations Partially Stabilize the Active State of Regulated Actin and Fully Stabilize the Active State When Paired with Δ14 TnT.

作者信息

Baxley Tamatha, Johnson Dylan, Pinto Jose R, Chalovich Joseph M

机构信息

Department of Biochemistry & Molecular Biology, Brody School of Medicine at East Carolina University , Greenville, North Carolina 27858, United States.

Department of Biomedical Sciences, Florida State University College of Medicine , Tallahassee, Florida 32304, United States.

出版信息

Biochemistry. 2017 Jun 13;56(23):2928-2937. doi: 10.1021/acs.biochem.6b01092. Epub 2017 May 31.

Abstract

Striated muscle contraction is regulated by the actin-associated proteins tropomyosin and troponin. The extent of activation of myosin ATPase activity is lowest in the absence of both Ca and activating cross-bridges (i.e., S1-ADP or rigor S1). Binding of activating species of myosin to actin at a saturating Ca concentration stabilizes the most active state (M state) of the actin-tropomyosin-troponin complex (regulated actin). Ca binding alone produces partial stabilization of the active state. The extent of stabilization at a saturating Ca concentration depends on the isoform of the troponin subunits, the phosphorylation state of troponin, and, in the case of cardiac muscle, the presence of hypertrophic cardiomyopathy-producing mutants of troponin T and troponin I. Cardiac dysfunction is also associated with mutations of troponin C (TnC). Troponin C mutants A8V, C84Y, and D145E increase the Ca sensitivity of ATPase activity. We show that these mutants change the distribution of regulated actin states. The A8V and C84Y TnC mutants decreased the inactive B state distribution slightly at low Ca concentrations, but the D145E mutants had no effect on that state. All TnC mutants increased the level of the active M state compared to that of the wild type, at a saturating Ca concentration. Troponin complexes that contained two mutations that stabilize the active M state, A8V TnC and Δ14 TnT, appeared to be completely in the active state in the presence of only Ca. Because Ca gives full activation, in this situation, troponin must be capable of positioning tropomyosin in the active M state without the need for rigor myosin binding.

摘要

横纹肌收缩受肌动蛋白相关蛋白原肌球蛋白和肌钙蛋白调节。在没有钙离子和激活横桥(即S1-ADP或强直S1)的情况下,肌球蛋白ATP酶活性的激活程度最低。在钙离子浓度饱和时,激活型肌球蛋白与肌动蛋白结合可稳定肌动蛋白-原肌球蛋白-肌钙蛋白复合物(调节型肌动蛋白)的最活跃状态(M状态)。仅钙离子结合会使活跃状态部分稳定。在钙离子浓度饱和时的稳定程度取决于肌钙蛋白亚基的异构体、肌钙蛋白的磷酸化状态,对于心肌而言,还取决于产生肥厚性心肌病的肌钙蛋白T和肌钙蛋白I突变体的存在。心脏功能障碍也与肌钙蛋白C(TnC)的突变有关。肌钙蛋白C突变体A8V、C84Y和D145E增加了ATP酶活性对钙离子的敏感性。我们发现这些突变体改变了调节型肌动蛋白状态的分布。在低钙离子浓度下,A8V和C84Y TnC突变体使非活性B状态分布略有下降,但D145E突变体对该状态无影响。在钙离子浓度饱和时,与野生型相比,所有TnC突变体均增加了活性M状态的水平。包含两个稳定活性M状态突变的肌钙蛋白复合物,即A8V TnC和Δ14 TnT,在仅存在钙离子的情况下似乎完全处于活性状态。因为在这种情况下钙离子可实现完全激活,所以肌钙蛋白必须能够将原肌球蛋白定位在活性M状态,而无需强直肌球蛋白结合。

相似文献

1
Troponin C Mutations Partially Stabilize the Active State of Regulated Actin and Fully Stabilize the Active State When Paired with Δ14 TnT.
Biochemistry. 2017 Jun 13;56(23):2928-2937. doi: 10.1021/acs.biochem.6b01092. Epub 2017 May 31.
3
Stepwise C-Terminal Truncation of Cardiac Troponin T Alters Function at Low and Saturating Ca.
Biophys J. 2018 Aug 21;115(4):702-712. doi: 10.1016/j.bpj.2018.06.028. Epub 2018 Jul 12.
5
C-Terminal Basic Region of Troponin T Alters the Ca-Dependent Changes in Troponin I Interactions.
Biochemistry. 2022 Jun 7;61(11):1103-1112. doi: 10.1021/acs.biochem.2c00090. Epub 2022 May 6.
9
The C-terminus of troponin T is essential for maintaining the inactive state of regulated actin.
Biophys J. 2012 Jun 6;102(11):2536-44. doi: 10.1016/j.bpj.2012.04.037. Epub 2012 Jun 5.
10
Enhanced troponin I binding explains the functional changes produced by the hypertrophic cardiomyopathy mutation A8V of cardiac troponin C.
Arch Biochem Biophys. 2016 Jul 1;601:97-104. doi: 10.1016/j.abb.2016.03.011. Epub 2016 Mar 11.

引用本文的文献

1
Resolving the structure and dynamics of the disordered C terminus of human cardiac troponin T and effects of cardiomyopathic mutations.
Proc Natl Acad Sci U S A. 2025 Jul 15;122(28):e2425343122. doi: 10.1073/pnas.2425343122. Epub 2025 Jul 8.
2
Negative Charges Introduced Near the IT Helix of Cardiac Troponin T Stabilize the Active State of Actin Filaments.
Biochemistry. 2023 Jul 18;62(14):2137-2146. doi: 10.1021/acs.biochem.3c00279. Epub 2023 Jun 28.
3
Thin filament cardiomyopathies: A review of genetics, disease mechanisms, and emerging therapeutics.
Front Cardiovasc Med. 2022 Sep 7;9:972301. doi: 10.3389/fcvm.2022.972301. eCollection 2022.
4
The effect of Mg on Ca binding to cardiac troponin C in hypertrophic cardiomyopathy associated TNNC1 variants.
FEBS J. 2022 Dec;289(23):7446-7465. doi: 10.1111/febs.16578. Epub 2022 Aug 2.
5
Hypertrophic Cardiomyopathy Mutations of Troponin Reveal Details of Striated Muscle Regulation.
Front Physiol. 2022 May 26;13:902079. doi: 10.3389/fphys.2022.902079. eCollection 2022.
7
Ovine congenital progressive muscular dystrophy (OCPMD) is a model of TNNT1 congenital myopathy.
Acta Neuropathol Commun. 2020 Aug 20;8(1):142. doi: 10.1186/s40478-020-01017-1.
8
Cycling Cross-Bridges Contribute to Thin Filament Activation in Human Slow-Twitch Fibers.
Front Physiol. 2020 Mar 24;11:144. doi: 10.3389/fphys.2020.00144. eCollection 2020.
10
Stepwise C-Terminal Truncation of Cardiac Troponin T Alters Function at Low and Saturating Ca.
Biophys J. 2018 Aug 21;115(4):702-712. doi: 10.1016/j.bpj.2018.06.028. Epub 2018 Jul 12.

本文引用的文献

1
Commentary: Effect of Skeletal Muscle Native Tropomyosin on the Interaction of Amoeba Actin with Heavy Meromyosin.
Front Physiol. 2016 Aug 31;7:377. doi: 10.3389/fphys.2016.00377. eCollection 2016.
3
Enhanced troponin I binding explains the functional changes produced by the hypertrophic cardiomyopathy mutation A8V of cardiac troponin C.
Arch Biochem Biophys. 2016 Jul 1;601:97-104. doi: 10.1016/j.abb.2016.03.011. Epub 2016 Mar 11.
4
Cardiac troponin structure-function and the influence of hypertrophic cardiomyopathy associated mutations on modulation of contractility.
Arch Biochem Biophys. 2016 Jul 1;601:11-21. doi: 10.1016/j.abb.2016.02.004. Epub 2016 Feb 4.
5
Contributions of Ca2+-Independent Thin Filament Activation to Cardiac Muscle Function.
Biophys J. 2015 Nov 17;109(10):2101-12. doi: 10.1016/j.bpj.2015.09.028.
6
In Vivo Analysis of Troponin C Knock-In (A8V) Mice: Evidence that TNNC1 Is a Hypertrophic Cardiomyopathy Susceptibility Gene.
Circ Cardiovasc Genet. 2015 Oct;8(5):653-664. doi: 10.1161/CIRCGENETICS.114.000957. Epub 2015 Aug 24.
8
Biochemical characterisation of Troponin C mutations causing hypertrophic and dilated cardiomyopathies.
J Muscle Res Cell Motil. 2014 Apr;35(2):161-78. doi: 10.1007/s10974-014-9382-0. Epub 2014 Apr 18.
9
Utilities and limitations of genetic testing for hypertropic cardiomyopathy.
Expert Opin Med Diagn. 2008 May;2(5):539-46. doi: 10.1517/17530059.2.5.539.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验