Crosby Garrett S, Hei Bai, Lynn Melissa L, Chakraborti Ananya, Schwartz Steven D, Tardiff Jil C
Department of Physiological Sciences, University of Arizona, Tucson, AZ 85721.
Department of Chemistry and Biochemistry, University of Arizona, Tucson, AZ 85721.
Proc Natl Acad Sci U S A. 2025 Jul 15;122(28):e2425343122. doi: 10.1073/pnas.2425343122. Epub 2025 Jul 8.
The C-terminal tail of cardiac troponin T (C-cTnT) inhibits thin filament activation and is a hotspot for cardiomyopathic mutations and variants. The mechanism whereby this region limits activation is not well understood. The last 16 C-terminal residues form a highly flexible and disordered domain and thus have been poorly resolved in studies to date. Using Time-Resolved fluorescence resonance energy transfer (TR-FRET) we resolved the structure of the disordered C-cTnT and studied the structural and dynamic effects of cardiomyopathic mutations on the region. For wildtype (WT) thin filaments, our data revealed a repositioning of cTnT-274 closer to cTnC when bound with calcium and myosin, while cTnT-283 did not move relative to cTnC. Myosin binding decreased the flexibility of cTnT-274 while having no effect on cTnT-283. We found that hypertrophic cardiomyopathy mutation cTnT-K273E decreased flexibility and placed the C-cTnT in an activated position in the blocked and closed states, resulting in increased actomyosin interactions in the absence of calcium; while dilated cardiomyopathy mutation cTnT-D270N increased flexibility and decreased the ability of the C-cTnT to reach its activated position in the open state but had no effect on actomyosin interactions. Our results demonstrate the WT C-cTnT undergoes a disordered to ordered transition upon myosin binding that is directly altered in the presence of cardiomyopathic mutations. These data provide a structural framework for the coupling of TR-FRET with high-resolution molecular dynamics as a tool for interrogating intermolecular interactions of intrinsically disordered proteins and protein complexes.
心肌肌钙蛋白T的C末端尾巴(C-cTnT)可抑制细肌丝激活,是心肌病突变和变异的热点区域。该区域限制激活的机制尚不清楚。C末端的最后16个残基形成一个高度灵活且无序的结构域,因此在迄今为止的研究中分辨率较低。我们使用时间分辨荧光共振能量转移(TR-FRET)解析了无序的C-cTnT的结构,并研究了心肌病突变对该区域的结构和动力学影响。对于野生型(WT)细肌丝,我们的数据显示,当与钙和肌球蛋白结合时,cTnT-274会重新定位,使其更靠近cTnC,而cTnT-283相对于cTnC没有移动。肌球蛋白结合降低了cTnT-274的灵活性,而对cTnT-283没有影响。我们发现,肥厚型心肌病突变cTnT-K273E降低了灵活性,并使C-cTnT在受阻和闭合状态下处于激活位置,导致在没有钙的情况下肌动球蛋白相互作用增加;而扩张型心肌病突变cTnT-D270N增加了灵活性,并降低了C-cTnT在开放状态下到达其激活位置的能力,但对肌动球蛋白相互作用没有影响。我们的结果表明,野生型C-cTnT在与肌球蛋白结合后会经历从无序到有序的转变,而在存在心肌病突变的情况下这种转变会直接改变。这些数据为将TR-FRET与高分辨率分子动力学相结合提供了一个结构框架,作为研究内在无序蛋白质和蛋白质复合物分子间相互作用的工具。