Kulandaivelu Karikalan, Mandal Abul Kalam Azad
School of Bio Sciences and Technology, VIT University, Vellore - 632014, Tamil Nadu, India.
IET Nanobiotechnol. 2017 Jun;11(4):469-476. doi: 10.1049/iet-nbt.2016.0147.
The authors prepared surface modified (with polyelectrolyte layers), tea polyphenols (TPP) encapsulated, gelatin nanoparticles (TPP-GNP) and characterised them. The size of the spherical nanoparticles was ∼50 nm. Number of polyelectrolyte layers and incubation time influenced the encapsulation efficiency (EE); highest EE was noted in nanoparticles with six polyelectrolyte layers (TPP-GNP-6L) incubated for 4 h. TPP released from TPP-GNP-6L in simulated biological fluids indicated protection and controlled release of TPP due to encapsulation. Mathematical modelling indicated anomalous type as a predominant mode of TPP release. TPP-GNP-6L exhibited enhanced pharmacokinetics in rabbit model compared with free TPP. The area under the concentration-time curve and mean residence time were significantly higher in TPP-GNP-6L compared with free TPP which provide an evidence of higher bioavailability of TPP due to encapsulation. The authors demonstrated that encapsulation of TPP into GNPs favoured slow and sustained release of TPP with improved pharmacokinetics and bioavailability thereby can prolong the action of TPP.
作者制备了表面改性(带有聚电解质层)、包封有茶多酚(TPP)的明胶纳米颗粒(TPP-GNP)并对其进行了表征。球形纳米颗粒的尺寸约为50纳米。聚电解质层数和孵育时间会影响包封效率(EE);在孵育4小时的具有六层聚电解质的纳米颗粒(TPP-GNP-6L)中观察到最高的EE。从TPP-GNP-6L在模拟生物流体中释放的TPP表明,由于包封作用,TPP得到了保护并实现了控释。数学模型表明,TPP的释放以非菲克型为主导模式。与游离TPP相比,TPP-GNP-6L在兔模型中表现出增强的药代动力学。与游离TPP相比,TPP-GNP-6L的浓度-时间曲线下面积和平均驻留时间显著更高,这证明了由于包封作用TPP具有更高的生物利用度。作者证明,将TPP包封到明胶纳米颗粒中有利于TPP的缓慢持续释放,改善药代动力学和生物利用度,从而可以延长TPP的作用时间。