Suppr超能文献

利用可见/近红外光谱快速且经济高效地定量分析芝麻菜叶片中的硫代葡萄糖苷和总酚含量

Rapid and Cost-Effective Quantification of Glucosinolates and Total Phenolic Content in Rocket Leaves by Visible/Near-Infrared Spectroscopy.

作者信息

Toledo-Martín Eva María, Font Rafael, Obregón-Cano Sara, De Haro-Bailón Antonio, Villatoro-Pulido Myriam, Del Río-Celestino Mercedes

机构信息

Department of Genomics and Biotecnology, IFAPA Center La Mojonera, Camino San Nicolás, La Mojonera 1, 04745 Almería, Spain.

Department of Food and Health, IFAPA Center La Mojonera, Camino San Nicolás, La Mojonera 1, 04745 Almería, Spain.

出版信息

Molecules. 2017 May 20;22(5):851. doi: 10.3390/molecules22050851.

Abstract

The potential of visible-near infrared spectroscopy to predict glucosinolates and total phenolic content in rocket () leaves has been evaluated. Accessions of the species were scanned by NIRS as ground leaf, and their reference values regressed against different spectral transformations by modified partial least squares (MPLS) regression. The coefficients of determination in the external validation (R²VAL) for the different quality components analyzed in rocket ranged from 0.59 to 0.84, which characterize those equations as having from good to excellent quantitative information. These results show that the total glucosinolates, glucosativin and glucoerucin equations obtained, can be used to identify those samples with low and high contents. The glucoraphanin equation obtained can be used for rough predictions of samples and in case of total phenolic content, the equation showed good correlation. The standard deviation (SD) to standard error of prediction ratio (RPD) and SD to range (RER) were variable for the different quality compounds and showed values that were characteristic of equations suitable for screening purposes or to perform accurate analyses. From the study of the MPLS loadings of the first three terms of the different equations, it can be concluded that some major cell components such as protein and cellulose, highly participated in modelling the equations for glucosinolates.

摘要

已评估了可见-近红外光谱法预测芝麻菜()叶片中硫代葡萄糖苷和总酚含量的潜力。将该物种的种质作为磨碎的叶片用近红外光谱仪进行扫描,并通过改进的偏最小二乘法(MPLS)回归将其参考值与不同的光谱变换进行回归分析。在芝麻菜中分析的不同品质成分的外部验证决定系数(R²VAL)范围为0.59至0.84,这表明这些方程具有从良好到优秀的定量信息。这些结果表明,所获得的总硫代葡萄糖苷、葡萄糖芥苷和葡萄糖异硫氰酸烯丙酯方程可用于识别硫代葡萄糖苷含量低和高的样品。所获得的萝卜硫苷方程可用于对样品进行粗略预测,对于总酚含量,该方程显示出良好的相关性。不同品质化合物的预测标准偏差(SD)与预测比标准误差(RPD)以及SD与范围(RER)各不相同,其值表明这些方程适用于筛选目的或进行准确分析。通过对不同方程前三项的MPLS载荷研究可以得出结论,一些主要的细胞成分,如蛋白质和纤维素,在硫代葡萄糖苷方程建模中起了很大作用。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验