Suppr超能文献

深度神经网络:一种用于模拟生物视觉和大脑信息处理的新框架。

Deep Neural Networks: A New Framework for Modeling Biological Vision and Brain Information Processing.

作者信息

Kriegeskorte Nikolaus

机构信息

Medical Research Council Cognition and Brain Sciences Unit, University of Cambridge, Cambridge CB2 7EF, United Kingdom; email:

出版信息

Annu Rev Vis Sci. 2015 Nov 24;1:417-446. doi: 10.1146/annurev-vision-082114-035447.

Abstract

Recent advances in neural network modeling have enabled major strides in computer vision and other artificial intelligence applications. Human-level visual recognition abilities are coming within reach of artificial systems. Artificial neural networks are inspired by the brain, and their computations could be implemented in biological neurons. Convolutional feedforward networks, which now dominate computer vision, take further inspiration from the architecture of the primate visual hierarchy. However, the current models are designed with engineering goals, not to model brain computations. Nevertheless, initial studies comparing internal representations between these models and primate brains find surprisingly similar representational spaces. With human-level performance no longer out of reach, we are entering an exciting new era, in which we will be able to build biologically faithful feedforward and recurrent computational models of how biological brains perform high-level feats of intelligence, including vision.

摘要

神经网络建模的最新进展已在计算机视觉和其他人工智能应用领域取得了重大进展。人类水平的视觉识别能力正逐渐被人工系统所掌握。人工神经网络的灵感来源于大脑,其计算过程可以在生物神经元中实现。目前在计算机视觉领域占据主导地位的卷积前馈网络,更是从灵长类动物视觉层级结构中获得了进一步的启发。然而,当前的模型是出于工程目标而设计的,并非用于模拟大脑的计算过程。尽管如此,初步研究比较了这些模型与灵长类动物大脑之间的内部表征,结果发现它们的表征空间惊人地相似。随着人类水平的性能不再遥不可及,我们正步入一个令人兴奋的新时代,在这个时代,我们将能够构建出在生物学上忠实的前馈和循环计算模型,以揭示生物大脑是如何执行包括视觉在内的高级智能壮举的。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验