Raman Rajani, Bognár Anna, Ghamkhari Nejad Ghazaleh, Mukovskiy Albert, Martini Lucas, Giese Martin, Vogels Rufin
Department of Neurosciences, KU Leuven, Leuven, Belgium.
Leuven Brain Institute, KU Leuven, Leuven, Belgium.
Nat Commun. 2025 Jul 1;16(1):5796. doi: 10.1038/s41467-025-60945-5.
Body pose and orientation serve as vital visual signals in primate non-verbal social communication. Leveraging deep learning algorithms that extract body poses from videos of behaving monkeys, applied to a monkey avatar, we investigated neural tuning for pose and viewpoint, targeting fMRI-defined mid and anterior Superior Temporal Sulcus (STS) body patches. We modeled the pose and viewpoint selectivity of the units with keypoint-based principal component regression with cross-validation and applied model inversion as a key approach to identify effective body parts and views. Mid STS units were effectively modeled using view-dependent 2D keypoint representations, revealing that their responses were driven by specific body parts that differed among neurons. Some anterior STS units exhibited better predictive performances with a view-dependent 3D model. On average, anterior STS units were better fitted by a keypoint-based model incorporating mirror-symmetric viewpoint tuning than by view-dependent 2D and 3D keypoint models. However, in both regions, a view-independent keypoint model resulted in worse predictive performance. This keypoint-based approach provides insights into how the primate visual system encodes socially relevant body cues, deepening our understanding of body pose representation in the STS.
身体姿势和方向在灵长类动物的非语言社交交流中起着至关重要的视觉信号作用。利用从行为猴子的视频中提取身体姿势的深度学习算法,并将其应用于猴子虚拟形象,我们针对功能磁共振成像(fMRI)定义的颞上沟(STS)中部和前部身体区域,研究了对姿势和视角的神经调谐。我们使用基于关键点的主成分回归和交叉验证对单元的姿势和视角选择性进行建模,并将模型反演作为识别有效身体部位和视角的关键方法。使用依赖视角的二维关键点表示有效地对STS中部单元进行了建模,这表明它们的反应是由神经元之间不同的特定身体部位驱动的。一些STS前部单元在依赖视角的三维模型中表现出更好的预测性能。平均而言,与依赖视角的二维和三维关键点模型相比,结合镜像对称视角调谐的基于关键点的模型能更好地拟合STS前部单元。然而,在这两个区域中,与视角无关的关键点模型导致的预测性能更差。这种基于关键点的方法为灵长类视觉系统如何编码与社交相关的身体线索提供了见解,加深了我们对STS中身体姿势表征的理解。