Suppr超能文献

视觉皮层神经元的简化微模型。

A simplified minimodel of visual cortical neurons.

作者信息

Du Fengtong, Angel Núñez-Ochoa Miguel, Pachitariu Marius, Stringer Carsen

机构信息

HHMI Janelia Research Campus, Ashburn, VA, USA.

出版信息

Nat Commun. 2025 Jul 1;16(1):5724. doi: 10.1038/s41467-025-61171-9.

Abstract

Artificial neural networks (ANNs) have been shown to predict neural responses in primary visual cortex (V1) better than classical models. However, this performance often comes at the expense of simplicity and interpretability. Here we introduce a new class of simplified ANN models that can predict over 70% of the response variance of V1 neurons. To achieve this high performance, we first recorded a new dataset of over 29,000 neurons responding to up to 65,000 natural image presentations in mouse V1. We found that ANN models required only two convolutional layers for good performance, with a relatively small first layer. We further found that we could make the second layer small without loss of performance, by fitting individual "minimodels" to each neuron. Similar simplifications applied for models of monkey V1 neurons. We show that the minimodels can be used to gain insight into how stimulus invariance arises in biological neurons.

摘要

人工神经网络(ANNs)已被证明在预测初级视觉皮层(V1)的神经反应方面比传统模型表现更好。然而,这种性能往往是以牺牲简单性和可解释性为代价的。在此,我们引入了一类新的简化ANN模型,该模型能够预测V1神经元超过70%的反应方差。为实现这种高性能,我们首先记录了一个新数据集,其中包含超过29,000个神经元对小鼠V1中多达65,000个自然图像呈现的反应。我们发现,ANN模型仅需两个卷积层就能实现良好性能,且第一层相对较小。我们进一步发现,通过为每个神经元拟合单独的“微型模型”,我们可以在不损失性能的情况下使第二层变小。类似的简化方法也适用于猴子V1神经元模型。我们表明,这些微型模型可用于深入了解生物神经元中刺激不变性是如何产生的。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验