Santos M V, Sansinena M, Zaritzky N, Chirife J
Depto. de Ingenieria Química, Facultad de Ingenieria, Universidad Nacional de La Plata and Centro de Investigacion y Desarrollo en Criotecnologia de Alimentos (CONICET-UNLP), La Plata; Consejo Nacional de Investigaciones Científicas y Tecnicas, CABA, Argentina.
Facultad de Ciencias Agrarias, Pontificia Universidad Catolica Argentina, CABA; Consejo Nacional de Investigaciones Científicas y Tecnicas, CABA, Argentina.
Cryo Letters. 2017 Mar/Apr;38(2):119-124.
BACKGROUND: Dry ice-ethanol bath (-78 degree C) have been widely used in low temperature biological research to attain rapid cooling of samples below freezing temperature. The prediction of cooling rates of biological samples immersed in dry ice-ethanol bath is of practical interest in cryopreservation. The cooling rate can be obtained using mathematical models representing the heat conduction equation in transient state. Additionally, at the solid cryogenic-fluid interface, the knowledge of the surface heat transfer coefficient (h) is necessary for the convective boundary condition in order to correctly establish the mathematical problem.
The study was to apply numerical modeling to obtain the surface heat transfer coefficient of a dry ice-ethanol bath.
A numerical finite element solution of heat conduction equation was used to obtain surface heat transfer coefficients from measured temperatures at the center of polytetrafluoroethylene and polymethylmetacrylate cylinders immersed in a dry ice-ethanol cooling bath. The numerical model considered the temperature dependence of thermophysical properties of plastic materials used.
A negative linear relationship is observed between cylinder diameter and heat transfer coefficient in the liquid bath, the calculated h values were 308, 135 and 62.5 W/(mK) for PMMA 1.3, PTFE 2.59 and 3.14 cm in diameter, respectively.
The calculated heat transfer coefficients were consistent among several replicates; h in dry ice-ethanol showed an inverse relationship with cylinder diameter.
背景:干冰 - 乙醇浴(-78摄氏度)已广泛应用于低温生物学研究,以实现将样品快速冷却至冰点以下。预测浸入干冰 - 乙醇浴中的生物样品的冷却速率在低温保存中具有实际意义。冷却速率可以使用表示瞬态热传导方程的数学模型来获得。此外,在固体低温流体界面处,为了正确建立数学问题,对于对流边界条件而言,表面传热系数(h)的知识是必要的。
本研究旨在应用数值模拟来获得干冰 - 乙醇浴的表面传热系数。
使用热传导方程的数值有限元解,从浸入干冰 - 乙醇冷却浴中的聚四氟乙烯和聚甲基丙烯酸甲酯圆柱体中心处的测量温度获得表面传热系数。数值模型考虑了所用塑料材料热物理性质的温度依赖性。
在液体浴中观察到圆柱体直径与传热系数之间呈负线性关系,对于直径为1.3厘米的聚甲基丙烯酸甲酯、2.59厘米和3.14厘米的聚四氟乙烯,计算得到的h值分别为308、135和62.5瓦/(米·开尔文)。
计算得到的传热系数在几次重复实验中是一致的;干冰 - 乙醇中的h与圆柱体直径呈反比关系。