Suppr超能文献

细胞类型特异性细胞外基质引导人骨髓间充质干细胞在三维聚合物支架中的分化。

Cell type-specific extracellular matrix guided the differentiation of human mesenchymal stem cells in 3D polymeric scaffolds.

作者信息

Mao Yong, Hoffman Tyler, Wu Amy, Goyal Ritu, Kohn Joachim

机构信息

New Jersey Center for Biomaterials, Rutgers University, 145 Bevier Rd., Piscataway, NJ, 08854, USA.

出版信息

J Mater Sci Mater Med. 2017 Jul;28(7):100. doi: 10.1007/s10856-017-5912-9. Epub 2017 May 22.

Abstract

The tissue microenvironment has profound effects on tissue-specific regeneration. The 3-dimensional extracellular matrix (ECM) niche influences the linage-specific differentiation of stem cells in tissue. To understand how ECM guides tissue-specific regeneration, we established a series of 3D composite scaffolds containing ECMs derived from different primary cells isolated from a single animal species and assessed their impact on the differentiation of human mesenchymal stem cells (hMSCs). Synthetic microfiber scaffolds (fiber mats) were fabricated by electrospinning tyrosine-derived polycarbonates (pDTEC). The bovine primary fibroblasts, chondrocytes and osteoblasts cultured on the fiber mats produced and assembled their ECMs, infiltrating the pores of the fibrous scaffold. The composite scaffolds were decellularized to remove cellular components, preserve ECM and minimally affect polymer integrity. Characterization of the ECMs derived from different primary cells in the composite scaffolds showed overlapping but distinct compositions. The chondrogenic and osteogenic differentiation of hMSCs on the different composite scaffolds were compared. Our results showed that ECM derived from chondrocytes cultured in synthetic fiber mats promoted the chondrogenic differentiation of hMSC in the presence or absence of soluble inducing factors. ECM derived from co-culture of osteoblasts and chondrocytes promoted osteogenic differentiation in hMSCs better than ECM derived from chondrocytes. This study demonstrated that decellularized ECMs derived from different cell types formed within synthetic fiber scaffolds guide the tissue-specific differentiation of hMSCs. These composite scaffolds may be developed into models to study the mechanisms of ECM-induced tissue regeneration.

摘要

组织微环境对组织特异性再生具有深远影响。三维细胞外基质(ECM)微环境影响组织中干细胞的谱系特异性分化。为了解ECM如何引导组织特异性再生,我们建立了一系列3D复合支架,其包含从单一动物物种分离的不同原代细胞衍生的ECM,并评估了它们对人间充质干细胞(hMSC)分化的影响。通过静电纺丝酪氨酸衍生的聚碳酸酯(pDTEC)制备合成微纤维支架(纤维垫)。在纤维垫上培养的牛原代成纤维细胞、软骨细胞和成骨细胞产生并组装它们的ECM,渗透到纤维支架的孔隙中。对复合支架进行脱细胞处理以去除细胞成分,保留ECM并最小化影响聚合物完整性。对复合支架中源自不同原代细胞的ECM的表征显示出重叠但不同的组成。比较了hMSC在不同复合支架上的软骨生成和成骨分化。我们的结果表明,在合成纤维垫中培养的软骨细胞衍生的ECM在存在或不存在可溶性诱导因子的情况下均促进hMSC的软骨生成分化。成骨细胞和软骨细胞共培养衍生的ECM比软骨细胞衍生的ECM更好地促进hMSC中的成骨分化。这项研究表明,在合成纤维支架内形成的源自不同细胞类型的脱细胞ECM引导hMSC的组织特异性分化。这些复合支架可被开发成模型以研究ECM诱导的组织再生机制。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验