School of Physics and Technology, Wuhan University , Wuhan 430072, China.
International Center for Quantum Design of Functional Materials (ICQD), Hefei National Laboratory for Physical Sciences at the Microscale, and Synergetic Innovation Center of Quantum Information and Quantum Physics, University of Science and Technology of China , Hefei, Anhui 230026, China.
Nano Lett. 2017 Jul 12;17(7):4013-4018. doi: 10.1021/acs.nanolett.6b05354. Epub 2017 Jun 13.
Graphene is a promising material for designing next-generation electronic and valleytronic devices, which often demand the opening of a bandgap in the otherwise gapless pristine graphene. To date, several conceptually different mechanisms have been extensively exploited to induce bandgaps in graphene, including spin-orbit coupling and inversion symmetry breaking for monolayer graphene, and quantum confinement for graphene nanoribbons (GNRs). Here, we present a multiscale study of the competing gap opening mechanisms in a graphene overlayer and GNRs proximity-coupled to topological insulators (TIs). We obtain sizable graphene bandgaps even without inversion symmetry breaking and identify the Kekulé lattice distortions caused by the TI substrates to be the dominant gap opening mechanism. Furthermore, Kekulé distorted armchair GNRs display intriguing nonmonotonous gap dependence on the nanoribbon width, resulting from the coexistence of quantum confinement, edge passivation, and Kekulé distortions. The present study offers viable new approaches for tunable bandgap engineering in graphene and GNRs.
石墨烯是设计下一代电子和谷电子器件的一种很有前途的材料,这些器件通常需要在原本没有能隙的原始石墨烯中打开能隙。迄今为止,已经广泛利用了几种概念上不同的机制来在石墨烯中诱导能隙,包括单层石墨烯的自旋轨道耦合和反转对称性破坏,以及石墨烯纳米带(GNRs)的量子限制。在这里,我们对拓扑绝缘体(TIs)近邻耦合的石墨烯覆盖层和 GNRs 中的竞争能隙打开机制进行了多尺度研究。我们甚至在没有反转对称性破坏的情况下获得了相当大的石墨烯能隙,并确定了 TI 衬底引起的 Kekulé 晶格畸变是主要的能隙打开机制。此外,Kekulé 扭曲的扶手椅型 GNRs 显示出有趣的非单调能隙对纳米带宽度的依赖性,这是由于量子限制、边缘钝化和 Kekulé 畸变的共存。本研究为石墨烯和 GNRs 的可调谐能带工程提供了可行的新方法。