Walter Schottky Institut and Physik Department, Technische Universität München, Am Coulombwall 4, Garching 85748, Germany.
IBM Research-Zürich, Säumerstrasse 4, Rüschlikon 8803, Switzerland.
Nat Commun. 2017 May 23;8:15521. doi: 10.1038/ncomms15521.
The ability to generate phase-stabilized trains of ultrafast laser pulses by mode-locking underpins photonics research in fields, such as precision metrology and spectroscopy. However, the complexity of conventional mode-locked laser systems has hindered their realization at the nanoscale. Here we demonstrate that GaAs-AlGaAs nanowire lasers are capable of emitting pairs of phase-locked picosecond laser pulses with a repetition frequency up to 200 GHz when subject to incoherent pulsed optical excitation. By probing the two-pulse interference spectra, we show that pulse pairs remain mutually coherent over timescales extending to 30 ps, much longer than the emitted laser pulse duration (≤3 ps). Simulations performed by solving the optical Bloch equations produce good quantitative agreement with experiments, revealing how the phase information is stored in the gain medium close to transparency. Our results open the way to phase locking of nanowires integrated onto photonic circuits, optical injection locking and applications, such as on-chip Ramsey comb spectroscopy.
通过锁模将超短激光脉冲产生相位稳定的光脉冲序列,为精密测量和光谱学等领域的光子学研究提供了支撑。然而,传统锁模激光系统的复杂性阻碍了其在纳米尺度上的实现。在这里,我们证明了当用非相干脉冲光激发时,GaAs-AlGaAs 纳米线激光器能够发射具有重复频率高达 200GHz 的成对的锁相皮秒激光脉冲。通过探测两脉冲干涉光谱,我们表明脉冲对在扩展到 30ps 的时间尺度上仍然保持相互相干,远长于发射激光脉冲的持续时间(≤3ps)。通过求解光学布洛赫方程进行的模拟与实验结果非常吻合,揭示了相位信息是如何存储在接近透明的增益介质中的。我们的研究结果为在光子集成电路上实现纳米线的相位锁定、光注入锁定以及片上拉姆齐梳光谱学等应用铺平了道路。