IEEE Trans Image Process. 2017 Jul;26(7):3579-3593. doi: 10.1109/TIP.2017.2704438. Epub 2017 May 16.
Feature space transformation techniques have been widely studied for dimensionality reduction in vector-based feature space. However, these techniques are inapplicable to sequence data because the features in the same sequence are not independent. In this paper, we propose a method called max-min inter-sequence distance analysis (MMSDA) to transform features in sequences into a low-dimensional subspace such that different sequence classes are holistically separated. To utilize the temporal dependencies, MMSDA first aligns features in sequences from the same class to an adapted number of temporal states, and then, constructs the sequence class separability based on the statistics of these ordered states. To learn the transformation, MMSDA formulates the objective of maximizing the minimal pairwise separability in the latent subspace as a semi-definite programming problem and provides a new tractable and effective solution with theoretical proofs by constraints unfolding and pruning, convex relaxation, and within-class scatter compression. Extensive experiments on different tasks have demonstrated the effectiveness of MMSDA.
特征空间变换技术已经在基于向量的特征空间中得到了广泛的研究,用于降维。然而,这些技术不适用于序列数据,因为同一序列中的特征不是独立的。在本文中,我们提出了一种称为最大-最小序列间距离分析(MMSDA)的方法,将序列中的特征转换到一个低维子空间中,使得不同的序列类别整体上被分离。为了利用时间依赖性,MMSDA 首先将来自同一类别的序列中的特征对齐到适应数量的时间状态,然后基于这些有序状态的统计信息构建序列类别可分离性。为了学习变换,MMSDA 将在潜在子空间中最大化最小成对可分离性的目标表述为一个半定规划问题,并提供了一种新的可处理和有效的解决方案,通过约束展开和剪枝、凸松弛和类内散射压缩来提供理论证明。在不同任务上的广泛实验证明了 MMSDA 的有效性。