Suppr超能文献

使用纵向和多模态生物标志物的自回归建模预测轻度认知障碍向阿尔茨海默病的进展。

Predicting Progression From Mild Cognitive Impairment to Alzheimer's Disease Using Autoregressive Modelling of Longitudinal and Multimodal Biomarkers.

出版信息

IEEE J Biomed Health Inform. 2018 May;22(3):818-825. doi: 10.1109/JBHI.2017.2703918. Epub 2017 May 16.

Abstract

Mild cognitive impairment is a preclinical stage of Alzheimer's disease (AD). For effective treatment of AD, it is important to identify mild cognitive impairment (MCI) patients who are at a high risk of developing AD over the course of time. In this study, autoregressive modelling of multiple heterogeneous predictors of Alzheimer's disease is performed to capture their evolution over time. The models are trained using three different arrangements of longitudinal data. These models are then used to estimate future biomarker readings of individual test subjects. Finally, standard support vector machine classifier is employed for detecting MCI patients at risk of developing AD over the coming years. The proposed models are thoroughly evaluated for their predictive capability using both cognitive scores and MRI-derived measures. In a stratified five-fold cross validation setup, our proposed methodology delivered highest AUC of 88.93% (Accuracy = 84.29%) and 88.13% (Accuracy = 83.26%) for 1 year and 2 year ahead AD conversion prediction, respectively, on the most widely used Alzheimer's disease neuroimaging initiative data. The notable conclusions of this study are: 1) Clinical changes in MRI-derived measures can be better forecasted than cognitive scores, 2) Multiple predictor models deliver better conversion prediction than single biomarker models, 3) Cognitive score boosted by MRI-derived measures delivers better short-term ahead conversion prediction, and 4) Neuropsychological scores alone can deliver good accuracy for long-term conversion prediction.

摘要

轻度认知障碍是阿尔茨海默病(AD)的临床前阶段。为了有效治疗 AD,重要的是要识别出在一段时间内有发展为 AD 高风险的轻度认知障碍(MCI)患者。在这项研究中,对阿尔茨海默病的多个异质预测因子进行了自回归建模,以捕捉它们随时间的演变。使用三种不同的纵向数据排列来训练模型。然后,使用这些模型来估计个别测试对象的未来生物标志物读数。最后,采用标准支持向量机分类器来检测未来几年有发展为 AD 风险的 MCI 患者。使用认知评分和 MRI 衍生测量值对所提出的模型进行了彻底的评估,以评估其预测能力。在分层的五重交叉验证设置中,我们提出的方法在最广泛使用的阿尔茨海默病神经影像学倡议数据上分别实现了 88.93%(准确性=84.29%)和 88.13%(准确性=83.26%)的 1 年和 2 年 AD 转化预测的最高 AUC。这项研究的主要结论有:1)与认知评分相比,MRI 衍生测量值的临床变化可以更好地预测;2)多预测因子模型比单一生物标志物模型提供更好的转化预测;3)由 MRI 衍生测量值增强的认知评分可提供更好的短期转化预测;4)神经心理学评分本身可实现长期转化预测的良好准确性。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验