Suppr超能文献

一种用于轻度认知障碍向阿尔茨海默病转化预测的非参数方法:基于纵向数据的结果

A Nonparametric Approach for Mild Cognitive Impairment to AD Conversion Prediction: Results on Longitudinal Data.

作者信息

Minhas Sidra, Khanum Aasia, Riaz Farhan, Alvi Atif, Khan Shoab Ahmed

机构信息

Computer Engineering Department, College of Electrical and Mechanical Engineering, National University of Sciences and Technology, Islamabad, Pakistan.

Computer Science Department, Forman Christian College, Lahore, Pakistan.

出版信息

IEEE J Biomed Health Inform. 2017 Sep;21(5):1403-1410. doi: 10.1109/JBHI.2016.2608998. Epub 2016 Sep 13.

Abstract

The goal of this study is to introduce a nonparametric technique for predicting conversion from Mild Cognitive impairment (MCI)-to-Alzheimer's disease (AD). Progression of a slowly progressing disease such as AD benefits from the use of longitudinal data; however, research till now is limited due to the insufficient patient data and short follow-up time. A small dataset size invalidates the estimation of underlying disease progression model; hence, a supervised nonparametric method is proposed. While depicting a real-world setting, longitudinal data of three years are employed for training, whereas only the baseline visit's data is used for validation. The train set is preprocessed for extraction of two dense clusters representing the subjects who remain stable at MCI or progress to AD after three years of the baseline visit. Similarity between these clusters and the test point is calculated in Euclidean space. Multiple features from two modalities of biomarkers, i.e., neuropsychological measures (NM) and structural magnetic resonance imaging (MRI) morphometry are also analyzed. Due to the limited MCI dataset size (NM: 145, MRI: 52, NM+MRI: 29), leave-one-out cross validation setup is employed for performance evaluation. The algorithm performance is noted for both unimodal case and bimodal cases. Superior performance (accuracy: 89.66%, sensitivity: 87.50%, specificity: 92.31%, precision: 93.33%) is delivered by multivariate predictors. Three notable conclusions of this study are: 1) Longitudinal data are more powerful than the temporal data, 2) MRI is a better predictor of MCI-to-AD conversion than NM, and 3) multivariate predictors outperform single predictor models.

摘要

本研究的目的是引入一种非参数技术,用于预测从轻度认知障碍(MCI)向阿尔茨海默病(AD)的转化。像AD这样进展缓慢的疾病,其进展受益于纵向数据的使用;然而,由于患者数据不足和随访时间短,迄今为止的研究受到限制。小数据集规模使潜在疾病进展模型的估计无效;因此,提出了一种有监督的非参数方法。在描述真实世界的情况下,使用三年的纵向数据进行训练,而仅使用基线访视的数据进行验证。对训练集进行预处理,以提取两个密集簇,分别代表在基线访视三年后仍处于MCI稳定状态或进展为AD的受试者。在欧几里得空间中计算这些簇与测试点之间的相似度。还分析了生物标志物两种模式的多个特征,即神经心理学测量(NM)和结构磁共振成像(MRI)形态学。由于MCI数据集规模有限(NM:145,MRI:52,NM + MRI:29),采用留一法交叉验证设置进行性能评估。记录了单峰情况和双峰情况下的算法性能。多变量预测器具有卓越的性能(准确率:89.66%,灵敏度:87.50%,特异性:92.31%,精确率:93.33%)。本研究的三个显著结论是:1)纵向数据比时间数据更具说服力,2)MRI比NM更能预测MCI向AD的转化,3)多变量预测器优于单预测器模型。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验