Serwer Philip, Wright Elena T
Department of Biochemistry and Structural Biology, The University of Texas Health Science Center, San Antonio, TX 78229-3900, USA.
Viruses. 2017 May 19;9(5):119. doi: 10.3390/v9050119.
Adenosine triphosphate (ATP) cleavage powers packaging of a double-stranded DNA (dsDNA) molecule in a pre-assembled capsid of phages that include T3. Several observations constitute a challenge to the conventional view that the shell of the capsid is energetically inert during packaging. Here, we test this challenge by analyzing the in vitro effects of ATP on the shells of capsids generated by DNA packaging in vivo. These capsids retain incompletely packaged DNA (ipDNA) and are called ipDNA-capsids; the ipDNA-capsids are assumed to be products of premature genome maturation-cleavage. They were isolated via preparative Nycodenz buoyant density centrifugation. For some ipDNA-capsids, Nycodenz impermeability increases hydration and generates density so low that shell hyper-expansion must exist to accommodate associated water. Electron microscopy (EM) confirmed hyper-expansion and low permeability and revealed that 3.0 mM magnesium ATP (physiological concentration) causes contraction of hyper-expanded, lowpermeability ipDNA-capsids to less than mature size; 5.0 mM magnesium ATP (border of supraphysiological concentration) or more disrupts them. Additionally, excess sodium ADP reverses 3.0 mM magnesium ATP-induced contraction and re-generates hyper-expansion. The Nycodenz impermeability implies assembly perfection that suggests selection for function in DNA packaging. These findings support the above challenge and can be explained via the assumption that T3 DNA packaging includes a back-up cycle of ATP-driven capsid contraction and hyper-expansion.
三磷酸腺苷(ATP)的裂解为双链DNA(dsDNA)分子包装到包括T3噬菌体在内的预组装衣壳中提供动力。有几项观察结果对传统观点构成了挑战,即衣壳外壳在包装过程中在能量上是惰性的。在这里,我们通过分析ATP对体内DNA包装产生的衣壳外壳的体外影响来验证这一挑战。这些衣壳保留了未完全包装的DNA(ipDNA),被称为ipDNA衣壳;ipDNA衣壳被认为是过早基因组成熟裂解的产物。它们通过制备性 Nycodenz 浮力密度离心法分离。对于一些ipDNA衣壳,Nycodenz不可渗透性增加了水合作用并产生了极低的密度,以至于必须存在外壳过度膨胀以容纳相关的水。电子显微镜(EM)证实了过度膨胀和低渗透性,并显示3.0 mM镁ATP(生理浓度)会使过度膨胀、低渗透性的ipDNA衣壳收缩至小于成熟大小;5.0 mM镁ATP(超生理浓度边界)或更高浓度会破坏它们。此外,过量的钠ADP会逆转3.0 mM镁ATP诱导的收缩并重新产生过度膨胀。Nycodenz不可渗透性意味着组装完美,这表明在DNA包装中具有功能选择性。这些发现支持了上述挑战,并且可以通过假设T3 DNA包装包括ATP驱动的衣壳收缩和过度膨胀的备用循环来解释。