Suppr超能文献

利用无害气体试剂氟利昂在三维锂上形成氟化锂保形层。

Conformal Lithium Fluoride Protection Layer on Three-Dimensional Lithium by Nonhazardous Gaseous Reagent Freon.

机构信息

Department of Materials Science and Engineering, Stanford University , Stanford, California 94305, United States.

Department of Materials Science and Engineering and California NanoSystems Institute, University of California, Los Angeles , Los Angeles, California 90095, United States.

出版信息

Nano Lett. 2017 Jun 14;17(6):3731-3737. doi: 10.1021/acs.nanolett.7b01020. Epub 2017 May 25.

Abstract

Research on lithium (Li) metal chemistry has been rapidly gaining momentum nowadays not only because of the appealing high theoretical capacity, but also its indispensable role in the next-generation Li-S and Li-air batteries. However, two root problems of Li metal, namely high reactivity and infinite relative volume change during cycling, bring about numerous other challenges that impede its practical applications. In the past, extensive studies have targeted these two root causes by either improving interfacial stability or constructing a stable host. However, efficient surface passivation on three-dimensional (3D) Li is still absent. Here, we develop a conformal LiF coating technique on Li surface with commercial Freon R134a as the reagent. In contrast to solid/liquid reagents, gaseous Freon exhibits not only nontoxicity and well-controlled reactivity, but also much better permeability that enables a uniform LiF coating even on 3D Li. By applying a LiF coating onto 3D layered Li-reduced graphene oxide (Li-rGO) electrodes, highly reduced side reactions and enhanced cycling stability without overpotential augment for over 200 cycles were proven in symmetric cells. Furthermore, Li-S cells with LiF protected Li-rGO exhibit significantly improved cyclability and Coulombic efficiency, while excellent rate capability (∼800 mAh g at 2 C) can still be retained.

摘要

如今,人们对锂(Li)金属化学的研究迅速兴起,不仅因为其具有吸引人的高理论容量,而且因为其在下一代 Li-S 和 Li-空气电池中不可或缺的作用。然而,Li 金属的两个根本问题,即高反应性和循环过程中无限的相对体积变化,带来了许多其他挑战,阻碍了其实际应用。过去,广泛的研究通过改善界面稳定性或构建稳定的宿主来针对这两个根本原因。然而,在三维(3D)Li 上仍然缺乏有效的表面钝化。在这里,我们使用商业 Freon R134a 作为试剂在 Li 表面上开发了一种共形 LiF 涂层技术。与固/液试剂相比,气态 Freon 不仅具有无毒和可控反应性,而且渗透性更好,即使在 3D Li 上也能实现均匀的 LiF 涂层。通过在 3D 层状 Li 还原氧化石墨烯(Li-rGO)电极上施加 LiF 涂层,在对称电池中证明了高度还原的副反应和增强的循环稳定性,而无需超过 200 个循环的过电位增加。此外,LiF 保护的 Li-rGO 的 Li-S 电池表现出显著改善的循环性能和库仑效率,同时仍能保持优异的倍率性能(在 2 C 时约为 800 mAh g)。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验