Taklu Bereket Woldegbreal, Su Wei-Nien, Chiou Jeng-Chian, Chang Chia-Yu, Nikodimos Yosef, Lakshmanan Keseven, Hagos Teklay Mezgebe, Serbessa Gashahun Gobena, Desta Gidey Bahre, Tekaligne Teshager Mekonnen, Ahmed Shadab Ali, Yang Sheng-Chiang, Wu She-Huang, Hwang Bing Joe
Nano-Electrochemistry Laboratory, Graduate Institute of Applied Science and Technology, National Taiwan University of Science and Technology, Taipei 106, Taiwan.
Sustainable Electrochemical Energy Development (SEED) Center, National Taiwan University of Science and Technology, Taipei 106, Taiwan.
ACS Appl Mater Interfaces. 2024 Apr 10;16(14):17422-17431. doi: 10.1021/acsami.3c17559. Epub 2024 Apr 1.
The use of the "Holy Grail" lithium metal anode is pivotal to achieve superior energy density. However, the practice of a lithium metal anode faces practical challenges due to the thermodynamic instability of lithium metal and dendrite growth. Herein, an artificial stabilization of lithium metal was carried out via the thermal pyrolysis of the NHF salt, which generates HF(g) and NH(g). An exposure of lithium metal to the generated gas induces a spontaneous reaction that forms multiple solid electrolyte interface (SEI) components, such as LiF, LiN, LiNH, LiNH, and LiH, from a single salt. The artificially multilayered protection on lithium metal (AF-Li) sustains stable lithium stripping/plating. It suppresses the Li dendrite under the Li||Li symmetric cell. The half-cell Li||Cu and Li||MCMB systems depicted the attributions of the protective layer. We demonstrate that the desirable protective layer in AF-Li exhibited remarkable capacity retention (CR) results. LiFePO (LFP) showed a CR of 90.6% at 0.5 mA cm after 280 cycles, and LiNiMnCoO (NCM523) showed 58.7% at 3 mA cm after 410 cycles. Formulating the multilayered protection, with the simultaneous formation of multiple SEI components in a facile and cost-effective approach from NHF as a single salt, made the system competent.
使用“圣杯”锂金属负极对于实现卓越的能量密度至关重要。然而,由于锂金属的热力学不稳定性和枝晶生长,锂金属负极的应用面临实际挑战。在此,通过NHF盐的热解对锂金属进行人工稳定化处理,热解过程会产生HF(g)和NH(g)。锂金属暴露于所产生的气体中会引发自发反应,从单一盐中形成多种固体电解质界面(SEI)成分,如LiF、LiN、LiNH、LiNH和LiH。对锂金属的人工多层保护(AF-Li)维持了稳定的锂剥离/镀覆过程。它抑制了Li||Li对称电池中的锂枝晶。半电池Li||Cu和Li||MCMB系统展示了保护层的特性。我们证明,AF-Li中理想的保护层表现出了出色的容量保持率(CR)结果。LiFePO(LFP)在280次循环后,在0.5 mA cm下的CR为90.6%,LiNiMnCoO(NCM523)在410次循环后,在3 mA cm下的CR为58.7%。通过一种简便且经济高效的方法,以NHF作为单一盐同时形成多种SEI成分来构建多层保护,使该系统具备了优势。