Department of Human Genetics, McGill University, 1205 Dr. Penfield Avenue, Montréal, QC, Canada H3A 1B1.
Child Health and Human Development Program (CHHD), Research Institute of McGill University Health Centre, 1001 Decarie Blvd, Westmount, QC, Canada H4A 3J1.
Mol Hum Reprod. 2017 Jul 1;23(7):461-477. doi: 10.1093/molehr/gax029.
Do paternal exposures to folic acid deficient (FD), and/or folic acid supplemented (FS) diets, throughout germ cell development adversely affect male germ cells and consequently offspring health outcomes?
Male mice exposed over their lifetimes to both FD and FS diets showed decreased sperm counts and altered imprinted gene methylation with evidence of transmission of adverse effects to the offspring, including increased postnatal-preweaning mortality and variability in imprinted gene methylation.
There is increasing evidence that disruptions in male germ cell epigenetic reprogramming are associated with offspring abnormalities and intergenerational disease. The fetal period is the critical time of DNA methylation pattern acquisition for developing male germ cells and an adequate supply of methyl donors is required. In addition, DNA methylation patterns continue to be remodeled during postnatal spermatogenesis. Previous studies have shown that lifetime (prenatal and postnatal) folic acid deficiency can alter the sperm epigenome and increase the incidence of fetal morphological abnormalities.
STUDY DESIGN, SIZE, DURATION: Female BALB/c mice (F0) were placed on one of four amino-acid defined diets for 4 weeks before pregnancy and throughout pregnancy and lactation: folic acid control (Ctrl; 2 mg/kg), 7-fold folic acid deficient (7FD; 0.3 mg/kg), 10-fold high FS (10FS, 20 mg/kg) or 20-fold high FS (20FS, 40 mg/kg) diets. F1 males were weaned to their respective prenatal diets to allow for diet exposure during all windows of germline epigenetic reprogramming: the erasure, re-establishment and maintenance phases.
PARTICIPANTS/MATERIALS, SETTINGS, METHODS: F0 females were mated with chow-fed males to produce F1 litters whose germ cells were exposed to the diets throughout embryonic development. F1 males were subsequently mated with chow-fed female mice. Two F2 litters, unexposed to the experimental diets, were generated from each F1 male; one litter was collected at embryonic day (E)18.5 and one delivered and followed postnatally. DNA methylation at a global level and at the differentially methylated regions of imprinted genes (H19, Imprinted Maternally Expressed Transcript (Non-Protein Coding)-H19, Small Nuclear Ribonucleoprotein Polypeptide N-Snrpn, KCNQ1 Opposite Strand/Antisense Transcript 1 (Non-Protein Coding)-Kcnq1ot1, Paternally Expressed Gene 1-Peg1 and Paternally Expressed Gene 3-Peg3) was assessed by luminometric methylation analysis and bisulfite pyrosequencing, respectively, in F1 sperm, F2 E18.5 placenta and F2 E18.5 brain cortex.
F1 males exhibited lower sperm counts following lifetime exposure to both folic acid deficiency and the highest dose of folic acid supplementation (20FS), (both P < 0.05). Post-implantation losses were increased amongst F2 E18.5 day litters from 20FS exposed F1 males (P < 0.05). F2 litters derived from both 7FD and 20FS exposed F1 males had significantly higher postnatal-preweaning pup death (both P < 0.05). Sperm from 10FS exposed males had increased variance in methylation across imprinted gene H19, P < 0.05; increased variance at a few sites within H19 was also found for the 7FD and 20FS groups (P < 0.05). While the 20FS diet resulted in inter-individual alterations in methylation across the imprinted genes Snrpn and Peg3 in F2 E18.5 placenta, ≥50% of individual sites tested in Peg1 and/or Peg3 were affected in the 7FD and 10FS groups. Inter-individual alterations in Peg1 methylation were found in F2 E18.5 day 10FS group brain cortex (P < 0.05).
Not applicable.
The cause of the increase in postnatal-preweaning mortality was not investigated post-mortem. Further studies are required to understand the mechanisms underlying the adverse effects of folic acid deficiency and supplementation on developing male germ cells. Genome-wide DNA and histone methylome studies as well as gene expression studies are required to better understand the links between folic acid exposures, an altered germ cell epigenome and offspring outcomes.
The findings of this study provide further support for paternally transmitted environmental effects. The results indicate that both folic acid deficiency and high dose supplementation can be detrimental to germ cell development and reproductive fitness, in part by altering DNA methylation in sperm.
This study was supported by a grant to J.M.T. from the Canadian Institutes of Health Research (CIHR #89944). The authors declare they have no conflicts of interest.
在生殖细胞发育过程中,雄性亲体暴露于叶酸缺乏(FD)和/或叶酸补充(FS)饮食中,是否会对雄性生殖细胞产生不利影响,进而影响后代的健康结果?
雄性小鼠一生中暴露于 FD 和 FS 饮食中,精子数量减少,印迹基因甲基化改变,并有证据表明这些不利影响会传递给后代,包括增加产后-断奶前的死亡率和印迹基因甲基化的可变性。
越来越多的证据表明,雄性生殖细胞表观遗传重编程的中断与后代异常和代际疾病有关。胎儿期是雄性生殖细胞获取 DNA 甲基化模式的关键时期,需要足够的甲基供体。此外,DNA 甲基化模式在出生后精子发生过程中仍在不断重塑。先前的研究表明,一生中(产前和产后)叶酸缺乏会改变精子表观基因组,并增加胎儿形态异常的发生率。
研究设计、规模、持续时间:雌性 BALB/c 小鼠(F0)在怀孕前和怀孕及哺乳期接受为期 4 周的四种氨基酸定义饮食之一的喂养:叶酸对照(Ctrl;2mg/kg)、7 倍叶酸缺乏(7FD;0.3mg/kg)、10 倍高 FS(10FS,20mg/kg)或 20 倍高 FS(20FS,40mg/kg)饮食。F1 雄性小鼠断奶至其各自的产前饮食,以允许生殖细胞在整个生殖系表观遗传重编程的窗口期(消除、重新建立和维持阶段)暴露于饮食。
参与者/材料、设置、方法:F0 雌性与喂以标准饮食的雄性交配,产生 F1 后代,其生殖细胞在胚胎发育过程中暴露于饮食中。然后,F1 雄性与喂以标准饮食的雌性交配。从每只 F1 雄性产生两个未暴露于实验饮食的 F2 后代,一个在胚胎期(E)18.5 收集,一个分娩并进行产后监测。通过发光甲基化分析和亚硫酸氢盐焦磷酸测序分别评估 F1 精子、F2 E18.5 胎盘和 F2 E18.5 大脑皮质的全基因组水平和印迹基因差异甲基化区域(H19、印迹母体表达转录物(非蛋白编码)-H19、小核核糖核蛋白多肽 N-Snrpn、KCNQ1 反义链/反义转录物 1(非蛋白编码)-Kcnq1ot1、父系表达基因 1-Peg1 和父系表达基因 3-Peg3)的甲基化。
一生中暴露于叶酸缺乏和最高剂量叶酸补充(20FS)会导致 F1 雄性精子计数降低(均 P < 0.05)。来自 20FS 暴露 F1 雄性的 F2 E18.5 天窝仔的着床后损失增加(均 P < 0.05)。来自 7FD 和 20FS 暴露 F1 雄性的 F2 窝仔的产后-断奶前幼仔死亡率显著增加(均 P < 0.05)。10FS 暴露雄性的精子在印迹基因 H19 中表现出更高的甲基化方差,P < 0.05;在 7FD 和 20FS 组中,H19 中的几个位点也发现了甲基化方差增加(P < 0.05)。虽然 20FS 饮食导致 F2 E18.5 胎盘印迹基因 Snrpn 和 Peg3 中个体之间的甲基化改变,但在 7FD 和 10FS 组中,测试的≥50%的 Peg1 和/或 Peg3 个体位点受到影响。在 F2 E18.5 天 10FS 组大脑皮质中发现 Peg1 甲基化的个体改变(P < 0.05)。
不适用。
产后-断奶前死亡率增加的原因未进行死后检查。需要进一步的研究来了解叶酸缺乏和补充对发育中的雄性生殖细胞的不利影响的机制。需要进行全基因组 DNA 和组蛋白甲基化组学以及基因表达研究,以更好地理解叶酸暴露、生殖细胞表观基因组改变和后代结局之间的联系。
本研究的结果为父系传递的环境效应提供了进一步的支持。结果表明,叶酸缺乏和高剂量补充都可能对生殖细胞发育和生殖健康产生不利影响,部分原因是改变了精子中的 DNA 甲基化。
本研究由加拿大卫生研究院(CIHR #89944)授予 J.M.T. 的一项拨款资助。作者声明他们没有利益冲突。