Suppr超能文献

纳米线的光学束缚。

Optical Binding of Nanowires.

机构信息

Institute of Scientific Instruments of the CAS , Kràlovopolskà 147, 612 64 Brno, Czech Republic.

CNR-IPCF, Istituto per i Processi Chimico-Fisici, Consiglio Nazionale delle Ricerche , Viale F. Stagno D'Alcontres 37, I-98158 Messina, Italy.

出版信息

Nano Lett. 2017 Jun 14;17(6):3485-3492. doi: 10.1021/acs.nanolett.7b00494. Epub 2017 May 31.

Abstract

Multiple scattering of light induces structured interactions, or optical binding forces, between collections of small particles. This has been extensively studied in the case of microspheres. However, binding forces are strongly shape dependent: here, we turn our attention to dielectric nanowires. Using a novel numerical model we uncover rich behavior. The extreme geometry of the nanowires produces a sequence of stationary and dynamic states. In linearly polarized light, thermally stable ladder-like structures emerge. Lower symmetry, sagittate arrangements can also arise, whose configurational asymmetry unbalances the optical forces leading to nonconservative, translational motion. Finally, the addition of circular polarization drives a variety of coordinated rotational states whose dynamics expose fundamental properties of optical spin. These results suggest that optical binding can provide an increased level of control over the positions and motions of nanoparticles, opening new possibilities for driven self-organization and heralding a new field of self-assembling optically driven micromachines.

摘要

光的多次散射会在小颗粒集合体之间产生结构相互作用,或称为光学束缚力。这种现象在微球的情况下已经得到了广泛研究。然而,束缚力强烈依赖于形状:在这里,我们将注意力转向介电纳米线。我们使用一种新颖的数值模型揭示了丰富的行为。纳米线的极端几何形状产生了一系列稳定和动态的状态。在线偏振光中,会出现热稳定的阶梯状结构。较低的对称性,箭状排列也会出现,其构型不对称会使光学力失去平衡,导致非保守的平移运动。最后,圆偏振的加入会产生各种协调的旋转状态,其动力学揭示了光学自旋的基本性质。这些结果表明,光学束缚可以提供对纳米颗粒位置和运动的更高水平的控制,为驱动自组织开辟了新的可能性,并预示着一个新的自组装光驱动微机器领域的出现。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验