Suppr超能文献

Effect of Composition Asymmetry on the Phase Separation and Crystallization in Double Crystalline Binary Polymer Blends: A Dynamic Monte Carlo Simulation Study.

作者信息

Dasmahapatra Ashok Kumar

机构信息

Department of Chemical Engineering, Indian Institute of Technology Guwahati , Guwahati - 781039, Assam, India.

出版信息

J Phys Chem B. 2017 Jun 15;121(23):5853-5866. doi: 10.1021/acs.jpcb.7b02597. Epub 2017 Jun 6.

Abstract

Polymer blends offer an exciting material for various potential applications due to their tunable properties by varying constituting components and their relative composition. Our simulation results unravel an intrinsic relationship between crystallization behavior and composition asymmetry. We report simulation results for nonisothermal and isothermal crystallization with weak and strong segregation strength to elucidate the composition dependent crystallization behavior. With increasing composition of low melting B-polymer, macrophase separation temperature changes nonmonotonically, which is attributed to the nonmonotonic change in diffusivity of both polymers. In weak segregation strength, however, at high enough composition of B-polymer, A-polymer yields relatively thicker crystals, which is attributed to the dilution effect exhibited by B-polymer. When B-polymer composition is high enough, it acts like a "solvent" while A-polymer crystallizes. Under this situation, A-polymer segments become more mobile and less facile to crystallize. As a result, A-polymer crystallizes at a relatively low temperature with the formation of thicker crystals. At strong segregation strength, the dilution effect is accompanied by the strong A-B repulsive interaction, which is reflected in a nonmonotonic trend of the mean square radius of gyration with the increasing composition of the B-polymer. Isothermal crystallization also reveals a strong nonmonotonic relationship between composition and crystallization behavior. Two-step, compared to one-step, isothermal crystallization yields better crystals for both polymers.

摘要

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验