Suppr超能文献

用于识别乳腺病变的电外科烟雾的快速蒸发电离质谱分析:迈向乳腺癌手术的智能手术刀

Rapid evaporative ionisation mass spectrometry of electrosurgical vapours for the identification of breast pathology: towards an intelligent knife for breast cancer surgery.

作者信息

St John Edward R, Balog Julia, McKenzie James S, Rossi Merja, Covington April, Muirhead Laura, Bodai Zsolt, Rosini Francesca, Speller Abigail V M, Shousha Sami, Ramakrishnan Rathi, Darzi Ara, Takats Zoltan, Leff Daniel R

机构信息

Department of BioSurgery and Surgical Technology, Imperial College London, London, UK.

Division of Computational and Systems Medicine, Imperial College, London, UK.

出版信息

Breast Cancer Res. 2017 May 23;19(1):59. doi: 10.1186/s13058-017-0845-2.

Abstract

BACKGROUND

Re-operation for positive resection margins following breast-conserving surgery occurs frequently (average = 20-25%), is cost-inefficient, and leads to physical and psychological morbidity. Current margin assessment techniques are slow and labour intensive. Rapid evaporative ionisation mass spectrometry (REIMS) rapidly identifies dissected tissues by determination of tissue structural lipid profiles through on-line chemical analysis of electrosurgical aerosol toward real-time margin assessment.

METHODS

Electrosurgical aerosol produced from ex-vivo and in-vivo breast samples was aspirated into a mass spectrometer (MS) using a monopolar hand-piece. Tissue identification results obtained by multivariate statistical analysis of MS data were validated by histopathology. Ex-vivo classification models were constructed from a mass spectral database of normal and tumour breast samples. Univariate and tandem MS analysis of significant peaks was conducted to identify biochemical differences between normal and cancerous tissues. An ex-vivo classification model was used in combination with bespoke recognition software, as an intelligent knife (iKnife), to predict the diagnosis for an ex-vivo validation set. Intraoperative REIMS data were acquired during breast surgery and time-synchronized to operative videos.

RESULTS

A classification model using histologically validated spectral data acquired from 932 sampling points in normal tissue and 226 in tumour tissue provided 93.4% sensitivity and 94.9% specificity. Tandem MS identified 63 phospholipids and 6 triglyceride species responsible for 24 spectral differences between tissue types. iKnife recognition accuracy with 260 newly acquired fresh and frozen breast tissue specimens (normal n = 161, tumour n = 99) provided sensitivity of 90.9% and specificity of 98.8%. The ex-vivo and intra-operative method produced visually comparable high intensity spectra. iKnife interpretation of intra-operative electrosurgical vapours, including data acquisition and analysis was possible within a mean of 1.80 seconds (SD ±0.40).

CONCLUSIONS

The REIMS method has been optimised for real-time iKnife analysis of heterogeneous breast tissues based on subtle changes in lipid metabolism, and the results suggest spectral analysis is both accurate and rapid. Proof-of-concept data demonstrate the iKnife method is capable of online intraoperative data collection and analysis. Further validation studies are required to determine the accuracy of intra-operative REIMS for oncological margin assessment.

摘要

背景

保乳手术后因手术切缘阳性而进行再次手术的情况频繁发生(平均发生率为20%-25%),成本效益低,且会导致身体和心理上的发病。目前的切缘评估技术速度慢且劳动强度大。快速蒸发电离质谱(REIMS)通过对电外科气溶胶进行在线化学分析来测定组织结构脂质谱,从而快速识别解剖组织,以实现实时切缘评估。

方法

使用单极手持探头将来自离体和体内乳腺样本产生的电外科气溶胶吸入质谱仪(MS)。通过对MS数据进行多变量统计分析获得的组织识别结果由组织病理学进行验证。从正常和肿瘤乳腺样本的质谱数据库构建离体分类模型。对显著峰进行单变量和串联质谱分析,以识别正常组织和癌组织之间的生化差异。将离体分类模型与定制识别软件相结合,作为智能手术刀(iKnife),对离体验证集进行诊断预测。在乳腺手术期间获取术中REIMS数据,并与手术视频进行时间同步。

结果

使用从正常组织中的932个采样点和肿瘤组织中的226个采样点获取的经组织学验证的光谱数据建立的分类模型,灵敏度为93.4%,特异性为94.9%。串联质谱鉴定出63种磷脂和6种甘油三酯,它们造成了不同组织类型之间的24个光谱差异。iKnife对260个新获取的新鲜和冷冻乳腺组织标本(正常n = 161,肿瘤n = 99)的识别准确率为灵敏度90.9%,特异性98.8%。离体和术中方法产生了视觉上可比的高强度光谱。iKnife对术中电外科蒸汽的解读,包括数据采集和分析,平均可在1.80秒内完成(标准差±0.40)。

结论

基于脂质代谢的细微变化,REIMS方法已针对异质性乳腺组织的实时iKnife分析进行了优化,结果表明光谱分析既准确又快速。概念验证数据表明iKnife方法能够进行术中在线数据收集和分析。需要进一步的验证研究来确定术中REIMS用于肿瘤切缘评估的准确性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f19d/5442854/dff76f4f69f5/13058_2017_845_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验