School of Computing, Queen's University, Ontario, Canada.
Department of Surgery, Queen's University, Ontario, Canada.
Int J Comput Assist Radiol Surg. 2021 May;16(5):861-869. doi: 10.1007/s11548-021-02381-6. Epub 2021 May 6.
One in five women who undergo breast conserving surgery will need a second revision surgery due to remaining tumor. The iKnife is a mass spectrometry modality that produces real-time margin information based on the metabolite signatures in surgical smoke. Using this modality and real-time tissue classification, surgeons could remove all cancerous tissue during the initial surgery, improving many facets of patient outcomes. An obstacle in developing a iKnife breast cancer recognition model is the destructive, time-consuming and sensitive nature of the data collection that limits the size of the datasets.
We address these challenges by first, building a self-supervised learning model from limited, weakly labeled data. By doing so, the model can learn to contextualize the general features of iKnife data from a more accessible cancer type. Second, the trained model can then be applied to a cancer classification task on breast data. This domain adaptation allows for the transfer of learnt weights from models of one tissue type to another.
Our datasets contained 320 skin burns (129 tumor burns, 191 normal burns) from 51 patients and 144 breast tissue burns (41 tumor and 103 normal) from 11 patients. We investigate the effect of different hyper-parameters on the performance of the final classifier. The proposed two-step method performed statistically significantly better than a baseline model (p-value < 0.0001), by achieving an accuracy, sensitivity and specificity of 92%, 88% and 92%, respectively.
This is the first application of domain transfer for iKnife REIMS data. We showed that having a limited number of breast data samples for training a classifier can be compensated by self-supervised learning and domain adaption on a set of unlabeled skin data. We plan to confirm this performance by collecting new breast samples and extending it to incorporate other cancer tissues.
五分之一接受保乳手术的女性需要进行第二次修正手术,原因是仍有肿瘤残留。iKnife 是一种质谱模式,可根据手术烟雾中的代谢物特征实时提供边缘信息。使用这种模式和实时组织分类,外科医生可以在初次手术中切除所有癌变组织,从而改善患者预后的多个方面。开发 iKnife 乳腺癌识别模型的一个障碍是数据采集的破坏性、耗时和敏感性,这限制了数据集的大小。
我们通过以下方法解决这些挑战:首先,从有限的、弱标记数据构建自监督学习模型。通过这样做,模型可以从更容易获得的癌症类型中学习到 iKnife 数据的一般特征。其次,经过训练的模型可以应用于乳房数据的癌症分类任务。这种域自适应允许从一种组织类型的模型转移学习到的权重到另一种类型。
我们的数据集包含 51 名患者的 320 个皮肤烧伤(129 个肿瘤烧伤,191 个正常烧伤)和 11 名患者的 144 个乳房组织烧伤(41 个肿瘤烧伤和 103 个正常烧伤)。我们研究了不同超参数对最终分类器性能的影响。与基线模型相比(p 值<0.0001),所提出的两步法在性能上表现出显著优势,其准确率、敏感度和特异度分别为 92%、88%和 92%。
这是 iKnife REIMS 数据首次应用域转移。我们表明,通过在一组未标记的皮肤数据上进行自我监督学习和域自适应,可以弥补训练分类器时乳房数据样本数量有限的问题。我们计划通过收集新的乳房样本并将其扩展到包含其他癌症组织来验证这一性能。