Structure Fédérative de Recherche François Bonamy, Micropicell, CNRS, INSERM, Université de Nantes, Nantes, France.
CRCINA, INSERM, CNRS, Université de Nantes, Nantes, France.
Sci Rep. 2017 May 23;7(1):2280. doi: 10.1038/s41598-017-01757-6.
The concept of hypofractionation is gaining momentum in radiation oncology centres, enabled by recent advances in radiotherapy apparatus. The gain of efficacy of this innovative treatment must be defined. We present a computer model based on translational murine data for in silico testing and optimization of various radiotherapy protocols with respect to tumour resistance and the microenvironment heterogeneity. This model combines automata approaches with image processing algorithms to simulate the cellular response of tumours exposed to ionizing radiation, modelling the alteration of oxygen permeabilization in blood vessels against repeated doses, and introducing mitotic catastrophe (as opposed to arbitrary delayed cell-death) as a means of modelling radiation-induced cell death. Published data describing cell death in vitro as well as tumour oxygenation in vivo are used to inform parameters. Our model is validated by comparing simulations to in vivo data obtained from the radiation treatment of mice transplanted with human prostate tumours. We then predict the efficacy of untested hypofractionation protocols, hypothesizing that tumour control can be optimized by adjusting daily radiation dosage as a function of the degree of hypoxia in the tumour environment. Further biological refinement of this tool will permit the rapid development of more sophisticated strategies for radiotherapy.
调强放疗的概念在放射肿瘤学中心得到了越来越多的关注,这得益于放疗设备的最新进展。这种创新治疗方法的疗效增益必须得到明确。我们提出了一个基于转化性小鼠数据的计算机模型,用于针对肿瘤耐药性和微环境异质性,对各种放射治疗方案进行计算机模拟测试和优化。该模型将自动机方法与图像处理算法相结合,模拟肿瘤对电离辐射的细胞反应,模拟血管中氧气通透性随重复剂量的改变,并引入有丝分裂灾难(而不是任意延迟的细胞死亡)作为模拟辐射诱导细胞死亡的方法。使用描述体外细胞死亡和体内肿瘤氧合的数据来提供信息参数。我们的模型通过将模拟结果与从接受人前列腺肿瘤移植的小鼠的放射治疗中获得的体内数据进行比较来验证。然后,我们预测未经测试的调强放疗方案的疗效,假设通过根据肿瘤环境缺氧程度调整每日放射剂量,可以优化肿瘤控制。进一步对该工具进行生物学细化,将允许快速开发更复杂的放射治疗策略。