Courcelles Mathieu, Coulombe-Huntington Jasmin, Cossette Émilie, Gingras Anne-Claude, Thibault Pierre, Tyers Mike
Institute for Research in Immunology and Cancer, Université de Montréal , Montréal, Québec H3C 3J7, Canada.
Lunenfeld-Tanenbaum Research Institute at Sinai Health Service , Toronto, Ontario M5G 1X5, Canada.
J Proteome Res. 2017 Jul 7;16(7):2645-2652. doi: 10.1021/acs.jproteome.7b00205. Epub 2017 Jun 5.
Protein cross-linking mass spectrometry (CL-MS) enables the sensitive detection of protein interactions and the inference of protein complex topology. The detection of chemical cross-links between protein residues can identify intra- and interprotein contact sites or provide physical constraints for molecular modeling of protein structure. Recent innovations in cross-linker design, sample preparation, mass spectrometry, and software tools have significantly improved CL-MS approaches. Although a number of algorithms now exist for the identification of cross-linked peptides from mass spectral data, a dearth of user-friendly analysis tools represent a practical bottleneck to the broad adoption of the approach. To facilitate the analysis of CL-MS data, we developed CLMSVault, a software suite designed to leverage existing CL-MS algorithms and provide intuitive and flexible tools for cross-platform data interpretation. CLMSVault stores and combines complementary information obtained from different cross-linkers and search algorithms. CLMSVault provides filtering, comparison, and visualization tools to support CL-MS analyses and includes a workflow for label-free quantification of cross-linked peptides. An embedded 3D viewer enables the visualization of quantitative data and the mapping of cross-linked sites onto PDB structural models. We demonstrate the application of CLMSVault for the analysis of a noncovalent Cdc34-ubiquitin protein complex cross-linked under different conditions. CLMSVault is open-source software (available at https://gitlab.com/courcelm/clmsvault.git ), and a live demo is available at http://democlmsvault.tyerslab.com/ .
蛋白质交联质谱分析(CL-MS)能够灵敏地检测蛋白质相互作用并推断蛋白质复合物的拓扑结构。检测蛋白质残基之间的化学交联可以识别蛋白质内和蛋白质间的接触位点,或者为蛋白质结构的分子建模提供物理约束。交联剂设计、样品制备、质谱分析及软件工具方面的最新创新显著改进了CL-MS方法。尽管现在有许多算法可用于从质谱数据中识别交联肽段,但缺乏用户友好的分析工具是该方法广泛应用的一个实际瓶颈。为便于分析CL-MS数据,我们开发了CLMSVault,这是一套软件套件,旨在利用现有的CL-MS算法,并为跨平台数据解读提供直观且灵活的工具。CLMSVault存储并整合从不同交联剂和搜索算法获得的互补信息。CLMSVault提供过滤、比较和可视化工具以支持CL-MS分析,并包含一个用于交联肽段无标记定量的工作流程。一个嵌入式3D查看器能够实现定量数据的可视化,并将交联位点映射到PDB结构模型上。我们展示了CLMSVault在分析不同条件下交联的非共价Cdc34-泛素蛋白复合物中的应用。CLMSVault是开源软件(可从https://gitlab.com/courcelm/clmsvault.git获取),实时演示可在http://democlmsvault.tyerslab.com/查看。