Liu Yin, Su Gaoxing, Wang Fei, Jia Jianbo, Li Shuhuan, Zhao Linlin, Shi Yali, Cai Yaqi, Zhu Hao, Zhao Bin, Jiang Guibin, Zhou Hongyu, Yan Bing
School of Environmental Science and Engineering, Shandong University , Jinan, Shandong 250100, China.
Research Center for Eco-Environmental Science, Chinese Academy of Sciences , Beijing 100085, China.
Environ Sci Technol. 2017 Jun 20;51(12):7120-7127. doi: 10.1021/acs.est.7b01635. Epub 2017 Jun 6.
Perfluorooctanesulfonate (PFOS) persistently accumulates in the environment and in humans, causing various toxicities. To determine the key molecular determinants for optimal PFOS specificity and efficiency, we designed and synthesized a combinatorial gold nanoparticle (GNP) library consisting of 18 members with rationally diversified hydrophobic, electrostatic, and fluorine-fluorine interaction components for PFOS bindings. According to our findings, the electrostatic and F-F interactions between PFOS and nanoparticles are complementary. When F-F attractions are relatively weak, the electrostatic interactions are dominant. As F-F interactions increase, the electrostatic contributions are reduced to as low as 20%, demonstrating that F-F binding may overpower even electrostatic interactions. Furthermore, F-F interactions (28-79% binding efficiency) are 2-fold stronger than regular hydrophobic interactions (15-39% binding efficiency) for PFOS adsorption, explaining why these novel PFOS-binding nanoparticles are superior to other conventional materials based on either hydrophobic or electrostatic binding. The PFOS adsorption by the optimized nanoparticles performs well in the presence of ionic interferences and in environmental wastewater. This library mapping approach can potentially be applied to recognition mechanism investigation of other pollutants and facilitate the discovery of effective monitoring probes and matrices for their removal.
全氟辛烷磺酸(PFOS)在环境和人体中持续累积,会引发多种毒性。为确定实现最佳PFOS特异性和效率的关键分子决定因素,我们设计并合成了一个由18个成员组成的组合金纳米颗粒(GNP)文库,这些成员具有经合理设计的、用于PFOS结合的多样化疏水、静电和氟-氟相互作用成分。根据我们的研究结果,PFOS与纳米颗粒之间的静电相互作用和F-F相互作用是互补的。当F-F吸引力相对较弱时,静电相互作用起主导作用。随着F-F相互作用增强,静电作用的贡献降低至20%,这表明F-F结合甚至可能超过静电相互作用。此外,对于PFOS吸附,F-F相互作用(结合效率为28 - 79%)比常规疏水相互作用(结合效率为15 - 39%)强两倍,这解释了为何这些新型PFOS结合纳米颗粒优于基于疏水或静电结合的其他传统材料。优化后的纳米颗粒对PFOS的吸附在存在离子干扰的情况下以及在环境废水中表现良好。这种文库映射方法有可能应用于其他污染物的识别机制研究,并有助于发现用于去除这些污染物的有效监测探针和基质。