Séré M, Thévenon S, Belem A M G, De Meeûs T
CIRDES, UMR IRD/CIRAD 177, Centre International de Recherche-Développement sur l'Elevage en zone Subhumide (CIRDES), Bobo-Dioulasso 01, Burkina-Faso.
CIRAD, UMR INTERTRYP, Montpellier, France.
Heredity (Edinb). 2017 Aug;119(2):55-63. doi: 10.1038/hdy.2017.26. Epub 2017 May 24.
Studying isolation by distance can provide useful demographic information. To analyze isolation by distance from molecular data, one can use some kind of genetic distance or coalescent simulations. Molecular markers can often display technical caveats, such as PCR-based amplification failures (null alleles, allelic dropouts). These problems can alter population parameter inferences that can be extracted from molecular data. In this simulation study, we analyze the behavior of different genetic distances in Island (null hypothesis) and stepping stone models displaying varying neighborhood sizes. Impact of null alleles of increasing frequency is also studied. In stepping stone models without null alleles, the best statistic to detect isolation by distance in most situations is the chord distance D. Nevertheless, for markers with genetic diversities H<0.4-0.5, all statistics tend to display the same statistical power. Marginal sub-populations behave as smaller neighborhoods. Metapopulations composed of small sub-population numbers thus display smaller neighborhood sizes. When null alleles are introduced, the power of detection of isolation by distance is significantly reduced and D remains the most powerful genetic distance. We also show that the proportion of null allelic states interact with the slope of the regression of F/(1-F) as a function of geographic distance. This can have important consequences on inferences that can be made from such data. Nevertheless, Chapuis and Estoup's FreeNA correction for null alleles provides very good results in most situations. We finally use our conclusions for reanalyzing and reinterpreting some published data sets.
研究距离隔离可以提供有用的人口统计学信息。为了从分子数据中分析距离隔离,人们可以使用某种遗传距离或溯祖模拟。分子标记常常会显示出技术上的问题,比如基于PCR的扩增失败(无效等位基因、等位基因缺失)。这些问题会改变从分子数据中提取的群体参数推断。在这项模拟研究中,我们分析了不同遗传距离在岛屿模型(零假设)和展示不同邻域大小的踏脚石模型中的行为。我们还研究了频率不断增加的无效等位基因的影响。在没有无效等位基因的踏脚石模型中,在大多数情况下检测距离隔离的最佳统计量是弦距离D。然而,对于遗传多样性H<0.4 - 0.5的标记,所有统计量往往显示出相同的统计效力。边缘亚群体的行为类似于较小的邻域。因此,由少量亚群体组成的集合种群显示出较小的邻域大小。当引入无效等位基因时,距离隔离的检测效力会显著降低,而D仍然是最有效的遗传距离。我们还表明,无效等位基因状态的比例与F/(1 - F)作为地理距离函数的回归斜率相互作用。这可能会对从这些数据中得出的推断产生重要影响。然而,Chapuis和Estoup针对无效等位基因的FreeNA校正在大多数情况下都能提供很好的结果。我们最终利用我们的结论重新分析和重新解释了一些已发表的数据集。