Suppr超能文献

病毒在自然环境中的传播速度有多快?

How fast are viruses spreading in the wild?

作者信息

Dellicour Simon, Bastide Paul, Rocu Pauline, Fargette Denis, Hardy Olivier J, Suchard Marc A, Guindon Stéphane, Lemey Philippe

机构信息

Spatial Epidemiology Lab (SpELL), Université Libre de Bruxelles, Brussels, Belgium.

Department of Microbiology, Immunology and Transplantation, Rega Institute, KU Leuven, Leuven, Belgium.

出版信息

PLoS Biol. 2024 Dec 3;22(12):e3002914. doi: 10.1371/journal.pbio.3002914. eCollection 2024 Dec.

Abstract

Genomic data collected from viral outbreaks can be exploited to reconstruct the dispersal history of viral lineages in a two-dimensional space using continuous phylogeographic inference. These spatially explicit reconstructions can subsequently be used to estimate dispersal metrics that can be informative of the dispersal dynamics and the capacity to spread among hosts. Heterogeneous sampling efforts of genomic sequences can however impact the accuracy of phylogeographic dispersal metrics. While the impact of spatial sampling bias on the outcomes of continuous phylogeographic inference has previously been explored, the impact of sampling intensity (i.e., sampling size) when aiming to characterise dispersal patterns through continuous phylogeographic reconstructions has not yet been thoroughly evaluated. In our study, we use simulations to evaluate the robustness of 3 dispersal metrics - a lineage dispersal velocity, a diffusion coefficient, and an isolation-by-distance (IBD) signal metric - to the sampling intensity. Our results reveal that both the diffusion coefficient and IBD signal metrics appear to be the most robust to the number of samples considered for the phylogeographic reconstruction. We then use these 2 dispersal metrics to compare the dispersal pattern and capacity of various viruses spreading in animal populations. Our comparative analysis reveals a broad range of IBD patterns and diffusion coefficients mostly reflecting the dispersal capacity of the main infected host species but also, in some cases, the likely signature of rapid and/or long-distance dispersal events driven by human-mediated movements through animal trade. Overall, our study provides key recommendations for the use of lineage dispersal metrics to consider in future studies and illustrates their application to compare the spread of viruses in various settings.

摘要

从病毒爆发中收集的基因组数据可用于通过连续系统地理学推断在二维空间中重建病毒谱系的传播历史。这些空间明确的重建结果随后可用于估计传播指标,这些指标可提供有关传播动态和在宿主间传播能力的信息。然而,基因组序列的异质采样努力可能会影响系统地理学传播指标的准确性。虽然之前已经探讨了空间采样偏差对连续系统地理学推断结果的影响,但在旨在通过连续系统地理学重建来表征传播模式时,采样强度(即采样大小)的影响尚未得到充分评估。在我们的研究中,我们使用模拟来评估三种传播指标——谱系传播速度、扩散系数和距离隔离(IBD)信号指标——对采样强度的稳健性。我们的结果表明,扩散系数和IBD信号指标对于系统地理学重建所考虑的样本数量似乎是最稳健的。然后,我们使用这两种传播指标来比较在动物群体中传播的各种病毒的传播模式和能力。我们的比较分析揭示了广泛的IBD模式和扩散系数,它们大多反映了主要感染宿主物种的传播能力,但在某些情况下,也反映了由人类通过动物贸易介导的快速和/或远距离传播事件的可能特征。总体而言,我们的研究为未来研究中使用谱系传播指标提供了关键建议,并说明了它们在比较病毒在各种环境中传播情况的应用。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e3e8/11614233/2f33315d7d58/pbio.3002914.g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验