Suppr超能文献

靶向蛋白质合成的富含脯氨酸的抗菌肽。

Proline-rich antimicrobial peptides targeting protein synthesis.

机构信息

Gene Center, Department for Biochemistry and Center for Integrated Protein Sciences Munich (CiPS-M), University of Munich, 81377 Munich, Germany.

Univ. Bordeaux, ARNA Laboratory, Inserm U1212, CNRS UMR 5320, IECB, 33607 Pessac, France.

出版信息

Nat Prod Rep. 2017 Jul 1;34(7):702-711. doi: 10.1039/c7np00020k. Epub 2017 May 24.

Abstract

Covering: up to 2017The innate immune system employs a broad array of antimicrobial peptides (AMPs) to attack invading microorganisms. While most AMPs act by permeabilizing the bacterial membrane, specific subclasses of AMPs have been identified that pass through membranes and inhibit bacterial growth by targeting fundamental intracellular processes. One such subclass is the proline-rich antimicrobial peptides (PrAMPs) that bind to the ribosome and interfere with the process of protein synthesis. A diverse range of PrAMPs have been identified in insects, such as bees, wasps and beetles, and crustaceans, such as crabs, as well as in mammals, such as cows, sheep, goats and pigs. Mechanistically, the best-characterized PrAMPs are the insect oncocins, such as Onc112, and bovine bactenecins, such as Bac7. Biochemical and structural studies have revealed that these PrAMPs bind within the ribosomal exit tunnel with a reverse orientation compared to a nascent polypeptide chain. The PrAMPs allow initiation but prevent the transition into the elongation phase of translation. Insight into the interactions of PrAMPs with their ribosomal target provides the opportunity to further develop these peptides as novel antimicrobial agents.

摘要

涵盖

截至 2017 年

先天免疫系统采用广泛的抗菌肽 (AMPs) 来攻击入侵的微生物。虽然大多数 AMP 通过破坏细菌膜起作用,但已经确定了特定的 AMP 亚类,它们通过穿透膜并靶向基本的细胞内过程来抑制细菌生长。一类这样的亚类是富含脯氨酸的抗菌肽 (PrAMPs),它与核糖体结合并干扰蛋白质合成过程。在昆虫(如蜜蜂、黄蜂和甲虫)、甲壳类动物(如螃蟹)以及哺乳动物(如牛、羊、山羊和猪)中已经鉴定出多种 PrAMPs。在机制上,研究最充分的 PrAMPs 是昆虫 oncocins,如 Onc112,以及牛 bactenecins,如 Bac7。生化和结构研究表明,与新生多肽链相比,这些 PrAMPs 以反向方向结合在核糖体出口隧道内。PrAMPs 允许起始,但防止进入翻译的延伸阶段。深入了解 PrAMPs 与核糖体靶标的相互作用为进一步将这些肽开发为新型抗菌剂提供了机会。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验